Lecture 7 Outline

Reading: text, §4, 5

- 1. Policy languages
 - a. Web-based constraints
 - b. tripwire
- 2. English policy
 - a. Authorized Use Policy
 - b. Electronic Mail Policy
- 3. Secure, precise
 - a. Observability postulate
 - b. Theorem: for any program p and policy c, there is a secure, precise mechanism m^* such that, for all security mechanisms m associated with p and c, $m^* \approx m$
 - c. Theorem: There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program
- 4. Bell-LaPadula Model: intuitive, security classifications only
 - a. Show level, categories, define clearance and classification
 - b. Lattice: poset with relation reflexive, antisymmetric, transitive; greatest lower bound, least upper bound
 - c. Apply lattice
 - i. Set of classes *SC* is a partially ordered set under relation *dom* with *glb* (greatest lower bound), *lub* (least upper bound) operators
 - ii. Note: dom is reflexive, transitive, antisymmetric
 - iii. Example: $(A, C) \ dom \ (A', C') \ iff \ A \le A' \ and \ C \subseteq C'; \ lub((A, C), (A', C')) = (max(A, A'), C \cup C'), \ glb((A, C), (A', C')) = (min(A, A'), C \cap C')$
 - d. Simple security condition (no reads up), *-property (no writes down), discretionary security property
 - e. Basic Security Theorem: if it is secure and transformations follow these rules, it will remain secure
 - f. Maximum, current security level
- 5. BLP: formally
 - a. Elements of system: s_i subjects, o_i objects
 - b. State space $V = B \times M \times F \times H$ where:
 - B set of current accesses (i.e., access modes each subject has currently to each object);
 - *M* access permission matrix;

F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject;

H hierarchy of system objects, functions $h: O \rightarrow \mathcal{P}(O)$ with two properties:

- i. If $o_i \neq o_j$, then $h(o_i) \cap h(o_j) = \emptyset$
- ii. There is no set $\{o_1, \ldots, o_k\} \subseteq O$ such that for each $i, o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.
- c. Set of requests is R
- d. Set of decisions is D
- e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.
- f. System $\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z$ such that $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_t, z_{t-1}) \in W$ for each $i \in T$; latter is an action of system