Lecture 3: Decidability

January 11, 2011
1. Review

2. Decidability of security
 - Mono-operational command case
 - General case

3. Take-Grant Protection Model
 - Sharing rights
 - Take-Grant Systems
 - Stealing rights
 - Conspiracy
Why no “or”?

- Unnecessary!
- Break conditional expression into sequence of disjuncts
- Write command with same body for each disjunct
- Call them sequentially!
r, c Commands

\[
\text{command } \textit{grant \cdot read \cdot file \cdotifr}(p, f) \\
\quad \text{if } r \text{ in } A[p, f] \\
\quad \text{then} \\
\quad \qquad \text{enter } r \text{ into } A[q, f]; \\
\quad \qquad \text{enter } w \text{ into } A[q, f]; \\
\quad \text{end}
\]

\[
\text{command } \textit{grant \cdot read \cdot file \cdot ifc}(p, f) \\
\quad \text{if } c \text{ in } A[p, f] \\
\quad \text{then} \\
\quad \qquad \text{enter } r \text{ into } A[q, f]; \\
\quad \qquad \text{enter } w \text{ into } A[q, f]; \\
\quad \text{end}
\]
r or c Command

```
command grant.read.file.ifrorc(p, f)
     grant.read.file.ifr(p, f)
     grant.read.file.ifc(p, f)
end
```
What is “Secure”?

Leaking

Adding a generic right r where there was not one is *leaking*.

Safe

If a system S, beginning in initial state s_0, cannot leak right r, it is *safe* with respect to the right r.

Here, “safe” = “secure” for an abstract model.
What is Does “Decidable” Mean?

Safety Question

Does there exist an algorithm for determining whether a protection system \(S \) with initial state \(s_0 \) is safe with respect to a generic right \(r \)?
Mono-Operational Commands

Answer:
Yes!

Proof sketch:
Consider minimal sequence of commands c_1, \ldots, c_k to leak the right

- Can omit delete, destroy
- Can merge all creates into one

Worst case: insert every right into every entry; with s subjects, o objects, and n rights initially, upper bound is $k \leq n(s + 1)(o + 1)$
Proof (1)

- Consider minimal sequences of commands (of length m) needed to leak r from system with initial state s_0
 - Identify each command by the type of primitive operation it invokes
- Cannot test for absence of rights, so delete, destroy not relevant
 - Ignore them
- Reorder sequences of commands so all creates come first
 - Can be done because enters require subject, object to exist
- Commands after these creates check only for existence of right
Proof (2)

- It can be shown (see homework):
 - Suppose \(s_1, s_2 \) are created, and commands test rights in \(A[s_1, o_1], A[s_2, o_2] \)
 - Doing the same tests on \(A[s_1, o_1] \) and \(A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2] \) gives same result
 - Thus all *creates* unnecessary
 - Unless \(s_0 \) is empty; then you need to create it (1 *create*)

- In \(s_0 \):
 - \(|S_0| \) number of subjects, \(|O_0| \) number of objects, \(n \) number of (generic) rights

- In worst case, 1 create
 - So a total of at most \((|S_0| + 1)(|O_0| + 1) \) elements

- So \(m \leq n(|S_0| + 1)(|O_0| + 1) \)
General Case

Answer:

No

Proof sketch:

1. Show arbitrary Turing machine can be reduced to safety problem
2. Then deciding safety problem means deciding the halting problem
Turing Machine Review

- Infinite tape in one direction
- States K, symbols M, distinguished blank \mathcal{B}
- State transition function $\delta(k, m) = (k', m', L)$ in state k with symbol m under the TM head replace m with m', move head left one square, enter state k'
- Halting state is q_f
Mapping

Turing machine with head over square 3 on tape, in state k and its representation as an access control matrix:

- o is own right
- e is end right
Mapping

<table>
<thead>
<tr>
<th>Turing machine</th>
<th>Access control matrix representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 ...</td>
<td>s_1 s_2 s_3 s_4 ...</td>
</tr>
<tr>
<td>A B X D ...</td>
<td>s_1 o</td>
</tr>
</tbody>
</table>

After $\delta(k, C) = (k_1, X, R)$, where k is the previous state and k_1 the current state.
General case

Command Mapping

\[\delta(k, C) = (k_1, X, R) \text{ at intermediate becomes:} \]

\[\text{command } c_{k,C}(s_i, s_{i+1}) \]
\[\text{if } o \text{ in } A[s_i, s_{i+1}] \text{ and } k \text{ in } A[s_i, s_i] \text{ and } C \text{ in } A[s_i, s_i] \]
\[\text{then} \]
\[\text{delete } k \text{ from } A[s_i, s_i]; \]
\[\text{delete } C \text{ from } A[s_i, s_i]; \]
\[\text{enter } X \text{ into } A[s_i, s_i]; \]
\[\text{enter } k_1 \text{ into } A[s_{i+1}, s_{i+1}]; \]
\[\text{end} \]
Mapping

Turing machine

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>X</td>
<td>Y</td>
<td>o</td>
</tr>
</tbody>
</table>

⇒

Access control matrix representation

<table>
<thead>
<tr>
<th></th>
<th>s₁</th>
<th>s₂</th>
<th>s₃</th>
<th>s₄</th>
<th>s₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₁</td>
<td>A</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s₂</td>
<td>B</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s₃</td>
<td>X</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s₄</td>
<td></td>
<td></td>
<td>Y</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>s₅</td>
<td></td>
<td></td>
<td></td>
<td>k₂</td>
<td>e</td>
</tr>
</tbody>
</table>

After \(\delta(k₁, D) = (k₂, Y, R) \), where \(k₁ \) is the previous state and \(k₂ \) the current state
General case

Command Mapping

\[\delta(k_1, D) = (k_2, Y, R) \] at intermediate becomes:

\texttt{command} \quad \texttt{crightmost}_{k,D}(s_i , s_{i+1})
\[\text{if } e \text{ in } A[s_i , s_i] \text{ and } k_1 \text{ in } A[s_i , s_i] \text{ and } D \text{ in } A[s_i , s_i] \text{ then} \]
\[\text{delete } e \text{ from } A[s_i , s_i]; \]
\[\text{create subject } y; \]
\[\text{enter } o \text{ into } A[s_i , s_{i+1}]; \]
\[\text{enter } e \text{ into } A[s_{i+1} , s_{i+1}]; \]
\[\text{delete } k_1 \text{ from } A[s_i , s_i]; \]
\[\text{delete } D \text{ from } A[s_i , s_i]; \]
\[\text{enter } Y \text{ into } A[s_i , s_i]; \]
\[\text{enter } k_2 \text{ into } A[s_{i+1} , s_{i+1}]; \]
\texttt{end}
Rest of Proof

- Protection system exactly simulates a Turing machine
 - Exactly 1 end (e) right in access control matrix
 - 1 right in entries corresponds to state
 - Thus, at most 1 applicable command

- If Turing machine enters state q_f, then right has leaked

- If safety question decidable, then represent TM as protection system and determine if q_f leaks
 - This implies halting problem is decidable

- Conclusion: safety question undecidable
Other Results

- Set of unsafe symbols is recursively enumerable.
- Delete `create` primitive; then safety question is complete in P-SPACE.
- Delete `destroy`, `delete` primitives; then safety question is undecidable.
 - Such systems are called `monotonic`.
- Safety question for monoconditional, monotonic protection systems is decidable.
- Safety question for monoconditional protection systems with `create`, `enter`, `delete` (and no `destroy`) is decidable.
Take-Grant Protection Model

- A specific (not generic) system
 - Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system
System

- Objects (passive entities like files, ...)
- Subjects (active entities like users, processes ...)
- Don’t care (either a subject or an object)

\[G \vdash_{x} G' \]

Apply rewriting rule \(x \) (witness) to \(G \) to get \(G' \)

\[G \vdash^{*} G' \]

Apply a sequence of rewriting rules (witness) to \(G \) to get \(G' \)

\[R = \{ t, g, \ldots \} \]

Set of rights
Take, Grant Rules

In these rules, $\beta \subseteq \alpha \subseteq R$

Take Rule

$x \cdot y \otimes z \otimes t \alpha \triangleright x \cdot y \otimes z \otimes g \beta$

Grant Rule

$x \otimes y \cdot z \otimes g \alpha \triangleright x \otimes y \cdot z \otimes t \beta$
Create, Remove Rules

create rule

\[
\begin{align*}
\text{create rule} & \quad \bullet \quad \vdash \quad \bullet \\
x & \quad \alpha & \quad t & \quad y
\end{align*}
\]

remove rule

\[
\begin{align*}
\text{remove rule} & \quad \bullet \quad \vdash \quad \bullet \\
x & \quad \alpha & \quad \alpha - \beta & \quad y
\end{align*}
\]

These four rules are the *de jure* rules
Symmetry of Take and Grant

\[
\begin{align*}
\text{Take} & : x \rightarrow y \rightarrow z \\
\text{Grant} & : y \rightarrow x \rightarrow z
\end{align*}
\]
Symmetry of Take and Grant

1. x creates \((tg\ to\ new)\ v\)
Symmetry of Take and Grant

1. x creates \((tg \text{ to new}) \ v\)
2. x grants \((g \text{ to } v) \text{ to } y\)
Symmetry of Take and Grant

1. \(x \) creates \((tg \text{ to new}) \) \(v \)
2. \(x \) grants \((g \text{ to } v) \) to \(y \)
3. \(y \) grants \((\beta \text{ to } z) \) to \(v \)
Symmetry of Take and Grant

1. x creates \((tg \text{ to new}) \, v\)
2. x takes \((g \text{ to } v)\) from x
3. y grants \((\beta \text{ to } z)\) to v
4. x takes \((\beta \text{ to } z)\) from v
Islands

- **tg-path**: path of distinct vertices connected by edges labeled t or g
 - Call them **tg-connected**
- **island**: maximal tg-connected subject-only subgraph
 - Any right that a vertex in the island has, can be shared with any other vertex in the island
Initial, Terminal Spans

- **Initial span** from x to y: x can give rights it has to y
 - xsubject
 - tg-path between x, y with word in $\{ \rightarrow t^* \rightarrow g \} \cup \{ \nu \}$

- **Terminal span** from x to y: x can get rights y has
 - xsubject
 - tg-path between x, y with word in $\{ \rightarrow t^* \} \cup \{ \nu \}$
Bridges

- bridge \textit{tg}-path between subjects \(x, y\), with associated word in
 \(\{\overrightarrow{t^*}, \overleftarrow{t^*}, \overrightarrow{g \ t^*}, \overrightarrow{t^* \ g \ t^*}\}\)

 - rights can be transferred between the two endpoints
 - \textit{not} an island as intermediate vertices are objects
Example

- islands: \{p, u\}, \{w\}, \{y, s'\}
- bridges: u, v, w; w, x, y
- initial span: p (associated word \(\nu\))
- terminal span: s's (associated word \(\vec{t}\))
can·share Predicate

can·share(r, x, y, G₀) holds if, and only if, there is a sequence of protection graphs G₀, . . . , Gₙ such that G₀ ⊢* Gₙ using only de jure rules and in Gₙ there is an edge from x to y labeled r
Sharing rights

can·share Theorem

\[\text{can·share}(r, x, y, G_0) \] holds if, and only if, there is an edge from \(x \) to \(y \) labeled \(r \) in \(G_0 \), or the following hold simultaneously:

- there is an \(s \) in \(G_0 \) with an \(s \)-to-\(y \) edge labeled \(r \);
- there is a subject \(x' = x \) or \(x' \) initially spans to \(x \);
- there is a subject \(s' = s \) or \(s' \) terminally spans to \(s \); and
- there are islands \(I_1, \ldots, I_k \) connected by bridges, \(x' \) is in \(I_1 \), and \(s' \) is in \(I_k \)
Outline of Proof

1. s has r rights over y
2. s' acquires r rights over y from s
 - Definition of terminal span
3. x' acquires r rights over y from s'
 - Repeated application of sharing among vertices in islands, passing rights along bridges
4. x' gives r rights over y to x
 - Definition of initial span
Interpretation

- Access control matrix is generic
 - Can be applied in any situation
- Take-Grant has specific rules, rights
 - Can be applied in situations matching rules, rights
- What states can evolve from a system that is modeled using the Take-Grant Protection Model?
Take-Grant Generated Systems

Theorem: Let G_0 be a protection graph with 1 subject and no edges. Let R be a set of rights. Then $G_0 \vdash^* G$ if, and only if,

- G is a finite, directed graph consisting of subjects, objects, and edges;
- the edges are labeled from a non-empty subset of R; and
- at least 1 vertex in G has no incoming edges
Proof (1)

⇒: By construction; let G be the final graph in the theorem

- Let x_1, \ldots, x_n be subjects in G
- Let x_1 have no incoming edges
- Let $\alpha = R$

Construct G' as follows:

1. Do “x_1 creates ($\alpha \cup \{g\}$ to) new subject x_i”
2. For all (x_i, x_j) where x_i has a right over x_j, do “x_1 grants (α to x_j) to x_i”
3. Let β be the rights x_i has over x_j in G; then do “x_1 removes ($($($\alpha \cup \{g\}$) - β) to x_j)"

Now G' is the desired G
Proof (2)

\(\iff \) Let \(v \) be the initial subject, and \(G_0 \vdash^* G \)

- Inspection of rules gives:
 - \(G \) is finite;
 - \(G \) is a directed graph;
 - Subjects and objects only; and
 - All edges are labeled with nonempty subsets of \(R \)

- Limits of rules:
 - None allows vertices to be deleted, so \(v \) is in \(G \)
 - None adds \textit{incoming} edges to vertices without any incoming edges, so \(v \) has no incoming edges.
Example: Shared Buffer

Goal: \(p, q \) to communicate through shared buffer \(b \) controlled by trusted entity \(s \)
Example: Shared Buffer

Goal: \(p, q \) to communicate through shared buffer \(b \) controlled by trusted entity \(s \)

1. \(s \) creates (\(\{r, w\} \) to) new object \(b \)
Example: Shared Buffer

Goal: \(p, q \) to communicate through shared buffer \(b \) controlled by trusted entity \(s \)

1. \(s \) creates \((\{r, w\} \text{ to})\) new object \(b \)
2. \(s \) grants \((\{r, w\} \text{ to } b)\) to \(p \)
Example: Shared Buffer

Goal: \(p, q \) to communicate through shared buffer \(b \) controlled by trusted entity \(s \)

1. \(s \) creates \(\{r, w\} \) to new object \(b \)
2. \(s \) grants \(\{r, w\} \) to \(b \) to \(p \)
3. \(s \) grants \(\{r, w\} \) to \(b \) to \(q \)
Stealing rights

can-steal Predicate

can-steal\((r, x, y, G_0)\) holds if, and only if, there is no edge from \(x\) to \(y\) labeled \(r\) in \(G_0\), and the following hold simultaneously:

- there is an edge from \(x\) to \(y\) labeled \(r\) in \(G\);
- there is a sequence of rule applications \(\rho_1, \ldots, \rho_n\) such that \(G_{i-1} \vdash_{\rho_i} G_i\); and
- for all vertices \(v, w\) in \(G_{i-1}\), if there is an edge from \(v\) to \(y\) in \(G_0\) labeled \(r\), then \(\rho_i\) is *not* of the form “\(v\) grants \((r\ to \(y\))\ to \(w\)”
Example of Stealing

\[\text{can-steal}(\alpha, s, w, G_0) \]
Stealing rights

Example of Stealing

\[
\text{can-steal}(\alpha, s, w, G_0):
\]

1. u grants (t to v) to s
Example of Stealing

\[can\text{-}steal(\alpha, s, w, G_0) : \]
1. \(u \) grants \((t\text{ to } v)\) to \(s \)
2. \(s \) takes \((t\text{ to } x)\) from \(v \)

\[\]
Example of Stealing

\[\text{can\textcdotsteal}(\alpha, s, w, G_0): \]

1. **u** grants \((t \text{ to } v)\) to **s**
2. **s** takes \((t \text{ to } x)\) from **v**
3. **s** takes \((t \text{ to } u)\) from **x**
Example of Stealing

\[
can\text{-steal}(\alpha, s, w, G_0):
\]

1. \(u\) grants \((t \text{ to } v)\) to \(s\)
2. \(s\) takes \((t \text{ to } x)\) from \(v\)
3. \(s\) takes \((t \text{ to } u)\) from \(x\)
4. \(s\) takes \((\alpha \text{ to } w)\) from \(u\)
can·steal Theorem

can·steal(\(\alpha, \ x, \ y, \ G_0\)) holds if, and only if, the following hold simultaneously:

- there is no edge from \(x\)-to-\(y\) labeled \(\alpha\) in \(G_0\);
- there is a subject \(x' = x\) or \(x'\) initially spans to \(x\);
- there is a vertex \(s\) with an edge to \(y\) labeled \(\alpha\) in \(G_0\); and
- \(can\cdotshare(t, \ x', \ s, \ G_0)\) holds
Proof (1)

⇒: Assume all four conditions hold

- If \(x \) a subject:
 - \(x \) gets \(t \) rights to \(s \) (last condition); then takes \(\alpha \) to \(y \) from \(s \) (third condition)

- If \(x \) an object:
 - \(\text{can-share}(t, x', s, G_0) \) holds
 - If \(x' \) has no \(\alpha \) edge to \(y \) in \(G_0 \), \(x' \) takes \((\alpha \) to \(y) \) from \(s \) and grants it to \(x \)
 - If \(x' \) has an edge to \(y \) in \(G_0 \), \(x' \) creates surrogate \(x'' \), gives it \((t \) to \(s) \) and \((g \) to \(x'') \); then \(x'' \) takes \((\alpha \) to \(y) \) and grants it to \(x \)
Proof (2)

\[\iff: \text{Assume } \text{can}\cdot\text{steal}(\alpha, x, y, G_0) \text{ holds} \]

- First two conditions are immediate from definition of \text{can}\cdot\text{share}, \text{can}\cdot\text{steal}
- Third condition is immediate from theorem of conditions for \text{can}\cdot\text{share}
- Fourth condition: let \(\rho \) be a minimal length sequence of rule applications deriving \(G_n \) from \(G_0 \)
 - Let \(i \) be the smallest index such that \(G_{i-1} \vdash_{\rho_i} G_i \) that adds \(\alpha \) from some \(p \) to \(y \) in \(G_i \)
 - What rule is \(\rho_i \)?
Proof (3)

- Not remove or create rule
 - y exists already
- Not grant rule
 - G_i is the first graph in which an edge labeled α to y is added, so by definition of can\cdot share, it cannot be a grant
- Therefore ρ_i must be a take rule, so $\text{can\cdot share}(t, p, s, G_0)$ holds
 - By earlier theorem, there is a subject s' such that $s' = s$ or s' terminally spans to s
 - Also, sequence of islands l_1, \ldots, l_n with $x' \in l_1$, $s' \in l_n$
- Now consider what s is
Proof (4)

- If s object, $s' \neq s$
 - If s', p in same island, take $p = s'$; the $can\cdot share(t, x, s, G_0)$ holds
 - If they are not, the sequence is minimal, contradicting assumption
 - So choose s' in same island as p
Stealing rights

Proof (5)

If \(s \) subject, \(p \in I_n \)

- If \(p \notin G_0 \), there is a subject \(q \) such that \(\text{can-share}(t, q, s, G_0) \) holds
 - \(s \in G_0 \) and none of the rules add new labels to incoming edges on existing vertices

- As \(s \) owns \(\alpha \) rights to \(y \) in \(G_0 \), two cases arise:
 - If \(s = q \), replace “\(s \) grants (\(\alpha \) to \(y \)) to \(q \)” with the sequence:
 - \(p \) takes (\(\alpha \) to \(y \)) from \(s \)
 - \(p \) takes (\(g \) to \(q \)) from \(s \)
 - \(p \) grants (\(\alpha \) to \(y \)) to \(q \)
 - If \(s = q \), you only need the first
Conspiracy

- Minimize number of actors to generate a witness for $can\cdot share(\alpha, \ x, \ y, \ G_0)$
 - Actor is defined as x such that x initiates ρ_i
- Access set describes the “reach” of a subject
- Deletion set is set of vertices that cannot be involved in a transfer of rights
- Build conspiracy graph to capture how rights flow, and derive actors from it
Access Set

- **Access set** $A(x)$ **with focus** x: set of vertices
 - $\{x\}$
 - $\{y \mid x \text{ initially spans to } y\}$
 - $\{y \mid x \text{ terminally spans to } y\}$

- Idea is that vertex at focus can give rights to, or acquire rights from, a vertex in access set