Lecture #5

- Review of Schematic Protection Model
- Schematic Protection Model
 - Safety question
- Expressive Power
 - HRU and SPM
- Multiparent create
 - ESPM
Schematic Protection Model

• Type-based model
 – Protection type: entity label determining how control rights affect the entity
 • Set at creation and cannot be changed
 – Ticket: description of a single right over an entity
 • Entity has sets of tickets (called a domain)
 • Ticket is \(X/r \), where \(X \) is entity and \(r \) right
 – Functions determine rights transfer
 • Link: are source, target “connected”?
 • Filter: is transfer of ticket authorized?
Link Predicate

• Idea: \(\text{link}_i(X, Y) \) if \(X \) can assert some control right over \(Y \)

• Conjunction of disjunction of:
 – \(X/z \in \text{dom}(X) \)
 – \(X/z \in \text{dom}(Y) \)
 – \(Y/z \in \text{dom}(X) \)
 – \(Y/z \in \text{dom}(Y) \)
 – \text{true}
Filter Function

- Range is set of copyable tickets
 - Entity type, right
- Domain is subject pairs
- Copy a ticket $X/r:c$ from $\text{dom}(Y)$ to $\text{dom}(Z)$
 - $X/rc \in \text{dom}(Y)$
 - $\text{link}_i(Y, Z)$
 - $\tau(Y)/r:c \in f_i(\tau(Y), \tau(Z))$
- One filter function per link predicate
Types

• \(cr(a, b) \): tickets created when subject of type \(a \) creates entity of type \(b \) [\(cr \) for create-rule]

• \(B \) object: \(cr(a, b) \subseteq \{ b/r:c \in RI \} \)
 – \(A \) gets \(B/r:c \) iff \(b/r:c \in cr(a, b) \)

• \(B \) subject: \(cr(a, b) \) has two subsets
 – \(cr_P(a, b) \) added to \(A \), \(cr_C(a, b) \) added to \(B \)
 – \(A \) gets \(B/r:c \) if \(b/r:c \in cr_P(a, b) \)
 – \(B \) gets \(A/r:c \) if \(a/r:c \in cr_C(a, b) \)
Attenuating Create Rule

cr(a, b) attenuating if:

1. $cr_C(a, b) \subseteq cr_P(a, b)$ and

2. $a/r:c \in cr_P(a, b) \Rightarrow self/r:c \in cr_P(a, b)$
Safety Analysis

• Goal: identify types of policies with tractable safety analyses
• Approach: derive a state in which additional entries, rights do not affect the analysis; then analyze this state
 – Called a maximal state
Definitions

- System begins at initial state
- Authorized operation causes *legal transition*
- Sequence of legal transitions moves system into final state
 - This sequence is a *history*
 - Final state is *derivable* from history, initial state
More Definitions

• States represented by h
• Set of subjects SUB^h, entities ENT^h
• Link relation in context of state $h link^h$
• Dom relation in context of state $h dom^h$
\[\text{path}^h(X,Y) \]

- \(X, Y \) connected by one link or a sequence of links
- Formally, either of these hold:
 - for some \(i \), \(\text{link}^h_i(X, Y) \); or
 - there is a sequence of subjects \(X_0, \ldots, X_n \) such that \(\text{link}^h_i(X, X_0), \text{link}^h_i(X_n, Y) \), and for \(k = 1, \ldots, n \), \(\text{link}^h_i(X_{k-1}, X_k) \)
- If multiple such paths, refer to \(\text{path}^h_j(X, Y) \)
Capacity $\text{cap}(\text{path}^h(X,Y))$

- Set of tickets that can flow over $\text{path}^h(X,Y)$
 - If $\text{link}_i^h(X,Y)$: set of tickets that can be copied over the link (i.e., $f_i(\tau(X), \tau(Y))$)
 - Otherwise, set of tickets that can be copied over all links in the sequence of links making up the $\text{path}^h(X,Y)$

- Note: all tickets (except those for the final link) must be copyable
Flow Function

• Idea: capture flow of tickets around a given state of the system

• Let there be \(m \) path\(^h\)s between subjects \(X \) and \(Y \) in state \(h \). Then flow function

\[
\text{flow}^h : \text{SUB}\(^h\) \times \text{SUB}\(^h\) \rightarrow 2^{T \times R}
\]

is:

\[
\text{flow}^h(X,Y) = \bigcup_{i=1,\ldots,m} \text{cap}(\text{path}^h_i(X,Y))
\]
Properties of Maximal State

• Maximizes flow between all pairs of subjects
 – State is called *
 – Ticket in $flow^*(X,Y)$ means there exists a sequence of operations that can copy the ticket from X to Y

• Questions
 – Is maximal state unique?
 – Does every system have one?
Formal Definition

- Definition: $g \leq_0 h$ holds iff for all $X, Y \in SUB^0$, $flow^g(X,Y) \subseteq flow^h(X,Y)$.
 - Note: if $g \leq_0 h$ and $h \leq_0 g$, then g, h equivalent
 - Defines set of equivalence classes on set of derivable states

- Definition: for a given system, state m is maximal iff $h \leq_0 m$ for every derivable state h

- Intuition: flow function contains all tickets that can be transferred from one subject to another
 - All maximal states in same equivalence class
Maximal States

• Lemma. Given arbitrary finite set of states H, there exists a derivable state m such that for all $h \in H$, $h \leq_0 m$

• Outline of proof: induction
 – Basis: $H = \emptyset$; trivially true
 – Step: $|H'| = n + 1$, where $H' = G \cup \{h\}$. By IH, there is a $g \in G$ such that $x \leq_0 g$ for all $x \in G$.
Outline of Proof

• M interleaving histories of g, h which:
 – Preserves relative order of transitions in g, h
 – Omits second create operation if duplicated

• M ends up at state m

• If $path^g(X,Y)$ for $X, Y \in SUB^g$, $path^m(X,Y)$
 – So $g \leq_0 m$

• If $path^h(X,Y)$ for $X, Y \in SUB^h$, $path^m(X,Y)$
 – So $h \leq_0 m$

• Hence m maximal state in H'
Answer to Second Question

• Theorem: every system has a maximal state *

• Outline of proof: K is set of derivable states containing exactly one state from each equivalence class of derivable states
 – Consider X, Y in SUB^0. Flow function’s range is $2^{T \times R}$, so can take at most $2^{|T \times R|}$ values. As there are $|SUB^0|^2$ pairs of subjects in SUB^0, at most $2^{|T \times R|} |SUB^0|^2$ distinct equivalence classes; so K is finite

• Result follows from lemma
Safety Question

- In this model:
 Is there a derivable state with $X/r:c \in \text{dom}(A)$, or does there exist a subject B with ticket X/rc in the initial state in $\text{flow}^*(B,A)$?

- To answer: construct maximal state and test
 - Consider acyclic attenuating schemes; how do we construct maximal state?
Intuition

• Consider state h.

• State u corresponds to h but with minimal number of new entities created such that maximal state m can be derived with no create operations
 – So if in history from h to m, subject X creates two entities of type a, in u only one would be created; surrogate for both

• m can be derived from u in polynomial time, so if u can be created by adding a finite number of subjects to h, safety question decidable.
Fully Unfolded State

• State u derived from state 0 as follows:
 – delete all loops in cc; new relation cc'
 – mark all subjects as folded
 – while any $X \in SUB^0$ is folded
 • mark it unfolded
 • if X can create entity Y of type y, it does so (call this the y-surrogate of X); if entity $Y \in SUB^8$, mark it folded
 – if any subject in state h can create an entity of its own type, do so

• Now in state u
Termination

• First loop terminates as SUB^0 finite
• Second loop terminates:
 – Each subject in SUB^0 can create at most $|\text{TS}|$ children, and $|\text{TS}|$ is finite
 – Each folded subject in $|\text{SUB}^i|$ can create at most $|\text{TS}|$ children
 – When $i = |\text{TS}|$, subject cannot create more children; thus, folded is finite
 – Each loop removes one element
• Third loop terminates as SUB^h is finite
Surrogate

• Intuition: surrogate collapses multiple subjects of same type into single subject that acts for all of them
• Definition: given initial state 0, for every derivable state \(h \) define **surrogate function** \(\sigma: \text{ENT}^h \rightarrow \text{ENT}^h \) by:
 - if \(X \) in \(\text{ENT}^0 \), then \(\sigma(X) = X \)
 - if \(Y \) creates \(X \) and \(\tau(Y) = \tau(X) \), then \(\sigma(X) = \sigma(Y) \)
 - if \(Y \) creates \(X \) and \(\tau(Y) \neq \tau(X) \), then \(\sigma(X) = \tau(Y) \)-surrogate of \(\sigma(Y) \)
Implications

• $\tau(\sigma(X)) = \tau(X)$
• If $\tau(X) = \tau(Y)$, then $\sigma(X) = \sigma(Y)$
• If $\tau(X) \neq \tau(Y)$, then
 – $\sigma(X)$ creates $\sigma(Y)$ in the construction of u
 – $\sigma(X)$ creates entities X' of type $\tau(X) = \tau(\sigma(X))$

• From these, for a system with an acyclic attenuating scheme, if X creates Y, then tickets that would be introduced by pretending that $\sigma(X)$ creates $\sigma(Y)$ are in $\text{dom}^u(\sigma(X))$ and $\text{dom}^u(\sigma(Y))$
Deriving Maximal State

• Idea
 – Reorder operations so that all creates come first and replace history with equivalent one using surrogates
 – Show maximal state of new history is also that of original history
 – Show maximal state can be derived from initial state
Reordering

- H legal history deriving state h from state 0
- Order operations: first create, then demand, then copy operations
- Build new history G from H as follows:
 - Delete all creates
 - “X demands $Y/r:c$” becomes “$\sigma(X)$ demands $\sigma(Y)/r:c$”
 - “Y copies $X/r:c$ from Y” becomes “$\sigma(Y)$ copies $\sigma(X)/r:c$ from $\sigma(Y)$
Tickets in Parallel

• Theorem
 – All transitions in G legal; if $X/r:c \in dom^h(Y)$, then $\sigma(X)/r:c \in dom^h(\sigma(Y))$

• Outline of proof: induct on number of copy operations in H
Basis

- \(H \) has create, demand only; so \(G \) has demand only.

- 3 ways for \(X/r:c \) to be in \(\text{dom}^h(Y) \):

 - \(X/r:c \in \text{dom}^0(Y) \) means \(X, Y \in \text{ENT}^0 \), so trivially \(\sigma(X)/r:c \in \text{dom}^g(\sigma(Y)) \) holds

 - A create added \(X/r:c \in \text{dom}^h(Y) \): previous lemma says \(\sigma(X)/r:c \in \text{dom}^g(\sigma(Y)) \) holds

 - A demand added \(X/r:c \in \text{dom}^h(Y) \): corresponding demand operation in \(G \) gives \(\sigma(X)/r:c \in \text{dom}^g(\sigma(Y)) \)
Hypothesis

• Claim holds for all histories with k copy operations

• History H has $k+1$ copy operations
 – H' initial sequence of H composed of k copy operations
 – h' state derived from H'
Step

• G' sequence of modified operations corresponding to H'; g' derived state
 – G' legal history by hypothesis
• Final operation is “Z copied $X/r:c$ from Y”
 – So h, h' differ by at most $X/r:c \in \text{dom}^h(Z)$
 – Construction of G means final operation is $\sigma(X)/r:c \in \text{dom}^g(\sigma(Y))$
• Proves second part of claim
Step

• H' legal, so for H to be legal, we have:
 1. $X/rc \in \text{dom}^{h'}(Y)$
 2. $\text{link}_i^{h'}(Y, Z)$
 3. $\tau(X/r:c) \in f_i(\tau(Y), \tau(Z))$

• By IH, 1, 2, as $X/r:c \in \text{dom}^{h'}(Y)$,
 $\sigma(X)/r:c \in \text{dom}^{g'}(\sigma(Y))$ and $\text{link}_i^{g'}(\sigma(Y), \sigma(Z))$

• As σ preserves type, IH and 3 imply
 $\tau(\sigma(X)/r:c) \in f_i(\tau((\sigma(Y)), \tau(\sigma(Z))))$

• IH says G' legal, so G is legal
Corollary

- If $\text{link}_i^h(X, Y)$, then $\text{link}_i^g(\sigma(X), \sigma(Y))$
Main Theorem

- System has acyclic attenuating scheme
- For every history H deriving state h from initial state, there is a history G without create operations that derives g from the fully unfolded state u such that

$$\forall X,Y \in SUB^h)[flow^h(X, Y) \subseteq flow^g(\sigma(X), \sigma(Y))]$$

- Meaning: any history derived from an initial state can be simulated by corresponding history applied to the fully unfolded state derived from the initial state
Proof

• Outline of proof: show that every \(\text{path}^h(X,Y) \) has corresponding \(\text{path}^g(\sigma(X), \sigma(Y)) \) such that \(\text{cap}(\text{path}^h(X,Y)) = \text{cap}(\text{path}^g(\sigma(X), \sigma(Y))) \)

 – Then corresponding sets of tickets flow through systems derived from \(H \) and \(G \)

 – As initial states correspond, so do those systems

• Proof by induction on number of links
Basis and Hypothesis

• Length of $\text{path}^h(X, Y) = 1$. By definition of path^h, $\text{link}_i^h(X, Y)$, hence $\text{link}_i^g(\sigma(X), \sigma(Y))$. As σ preserves type, this means

$$\text{cap}(\text{path}^h(X, Y)) = \text{cap}(\text{path}^g(\sigma(X), \sigma(Y)))$$

• Now assume this is true when $\text{path}^h(X, Y)$ has length k
Step

• Let $path^h(X, Y)$ have length $k+1$. Then there is a Z such that $path^h(X, Z)$ has length k and $link_j^h(Z, Y)$.

• By IH, there is a $path^g(\sigma(X), \sigma(Z))$ with same capacity as $path^h(X, Z)$

• By corollary, $link_j^g(\sigma(Z), \sigma(Y))$

• As σ preserves type, there is $path^g(\sigma(X), \sigma(Y))$ with

$$cap(path^h(X, Y)) = cap(path^g(\sigma(X), \sigma(Y)))$$
Implication

• Let maximal state corresponding to \(v \) be \(\#u \)
 - Deriving history has no creates
 - By theorem,
 \[(\forall X, Y \in SUB^h)[flow^h(X, Y) \subseteq flow^{\#u}(\sigma(X), \sigma(Y))] \]
 - If \(X \in SUB^0, \sigma(X) = X \), so:
 \[(\forall X, Y \in SUB^0)[flow^h(X, Y) \subseteq flow^{\#u}(X, Y)] \]
 - So \(\#u \) is maximal state for system with acyclic attenuating scheme
 - \(\#u \) derivable from \(u \) in time polynomial to \(|SUB^u| \)
 - Worst case computation for \(flow^{\#u} \) is exponential in \(|TS| \)
Safety Result

• If the scheme is acyclic and attenuating, the safety question is decidable
Expressive Power

• How do the sets of systems that models can describe compare?
 – If HRU equivalent to SPM, SPM provides more specific answer to safety question
 – If HRU describes more systems, SPM applies only to the systems it can describe
HRU vs. SPM

- SPM more abstract
 - Analyses focus on limits of model, not details of representation

- HRU allows revocation
 - SMP has no equivalent to delete, destroy

- HRU allows multiparent creates
 - SMP cannot express multiparent creates easily, and not at all if the parents are of different types because \textit{can\textbullet create} allows for only one type of creator
Multiparent Create

• Solves mutual suspicion problem
 – Create proxy jointly, each gives it needed rights

• In HRU:

```plaintext
command multicreate(s₀, s₁, o)
if r in a[s₀, s₁] and r in a[s₁, s₀]
then
  create object o;
  enter r into a[s₀, o];
  enter r into a[s₁, o];
end
```