
Lecture #6	

•  Multiparent create	

•  Expressive power	

•  Typed Access Control Matrix (TAM)	

•  Overview of Policies	

•  The nature of policies	

– What they cover	

– Policy languages	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-1	

Expressiveness	

•  Graph-based representation to compare models	

•  Graph	

–  Vertex: represents entity, has static type	

–  Edge: represents right, has static type	

•  Graph rewriting rules:	

–  Initial state operations create graph in a particular state	

–  Node creation operations add nodes, incoming edges	

–  Edge adding operations add new edges between

existing vertices	

ECS 235B Winter Quarter 2011	

January 20, 2011	

 Slide #6-2	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Example: 3-Parent Joint Creation	

•  Simulate with 2-parent	

– Nodes P1, P2, P3 parents	

– Create node C with type c with edges of type e	

– Add node A1 of type a and edge from P1 to A1

of type e´	

P2	

 P3	

P1	

A1	

Slide #6-3	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Next Step	

•  A1, P2 create A2; A2, P3 create A3	

•  Type of nodes, edges are a and e´	

P2	

 P3	

P1	

A1	

 A2	

A3	

Slide #6-4	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Next Step	

•  A3 creates S, of type a	

•  S creates C, of type c	

S	

C	

P2	

 P3	

P1	

A1	

 A2	

A3	

Slide #6-5	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Last Step	

•  Edge adding operations:	

– P1→A1→A2→A3→S→C: P1 to C edge type e	

– P2→A2→A3→S→C: P2 to C edge type e	

– P3→A3→S→C: P3 to C edge type e	

S	

C	

P2	

 P3	

P1	

A1	

A2	

A3	

Slide #6-6	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Definitions	

•  Scheme: graph representation as above	

•  Model: set of schemes	

•  Schemes A, B correspond if graph for both

is identical when all nodes with types not in
A and edges with types in A are deleted	

Slide #6-7	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Example	

•  Above 2-parent joint creation simulation in
scheme TWO	

•  Equivalent to 3-parent joint creation scheme
THREE in which P1, P2, P3, C are of same
type as in TWO, and edges from P1, P2, P3
to C are of type e, and no types a and e´
exist in TWO	

Slide #6-8	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Simulation	

Scheme A simulates scheme B iff	

•  every state B can reach has a corresponding state

in A that A can reach; and	

•  every state that A can reach either corresponds to a

state B can reach, or has a successor state that
corresponds to a state B can reach	

–  The last means that A can have intermediate states not

corresponding to states in B, like the intermediate ones
in TWO in the simulation of THREE	

Slide #6-9	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Expressive Power	

•  If there is a scheme in MA that no scheme in
MB can simulate, MB less expressive than
MA	

•  If every scheme in MA can be simulated by
a scheme in MB, MB as expressive as MA	

•  If MA as expressive as MB and vice versa,
MA and MB equivalent	

Slide #6-10	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Example	

•  Scheme A in model M	

–  Nodes X1, X2, X3	

–  2-parent joint create	

–  1 node type, 1 edge type	

–  No edge adding operations	

–  Initial state: X1, X2, X3, no edges	

•  Scheme B in model N	

–  All same as A except no 2-parent joint create	

–  1-parent create	

•  Which is more expressive?	

Slide #6-11	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Can A Simulate B?	

•  Scheme A simulates 1-parent create: have
both parents be same node	

– Model M as expressive as model N	

Slide #6-12	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Can B Simulate A?	

•  Suppose X1, X2 jointly create Y in A	

– Edges from X1, X2 to Y, no edge from X3 to Y	

•  Can B simulate this?	

– Without loss of generality, X1 creates Y	

– Must have edge adding operation to add edge

from X2 to Y	

– One type of node, one type of edge, so

operation can add edge between any 2 nodes	

Slide #6-13	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

No	

•  All nodes in A have even number of incoming

edges	

–  2-parent create adds 2 incoming edges	

•  Edge adding operation in B that can edge from X2
to C can add one from X3 to C	

–  A cannot enter this state 	

•  A, cannot have node (C) with 3 incoming edges	

–  B cannot transition to a state in which Y has even

number of incoming edges	

•  No remove rule	

•  So B cannot simulate A; N less expressive than M	

Slide #6-14	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Theorem	

•  Monotonic single-parent models are less
expressive than monotonic multiparent models	

•  Proof by contradiction	

–  Scheme A is multiparent model	

–  Scheme B is single parent create	

–  Claim: B can simulate A, without assumption that they

start in the same initial state	

•  Note: example assumed same initial state	

Slide #6-15	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Outline of Proof	

•  X1, X2 nodes in A	

–  They create Y1, Y2, Y3 using multiparent create rule	

–  Y1, Y2 create Z, again using multiparent create rule	

–  Note: no edge from Y3 to Z can be added, as A has no edge-adding

operation	

X1	

X2	

Y1	

Y3	

Y2	

 Z	

Slide #6-16	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Outline of Proof	

•  W, X1, X2 nodes in B	

–  W creates Y1, Y2, Y3 using single parent create rule, and adds edges for X1, X2 to
all using edge adding rule	

–  Y1 creates Z, again using single parent create rule; now must add edge from X2 to Z
to simulate A	

–  Use same edge adding rule to add edge from Y3 to Z: cannot duplicate this in
scheme A!	

X1	

X2	

Y1	

Y3	

Y2	

 Z	

Slide #6-17	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Meaning	

•  Scheme B cannot simulate scheme A,
contradicting hypothesis	

•  ESPM more expressive than SPM	

– ESPM multiparent and monotonic	

– SPM monotonic but single parent	

Slide #6-18	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-19	

Typed Access Matrix Model	

•  Like ACM, but with set of types T	

– All subjects, objects have types	

– Set of types for subjects TS	

•  Protection state is (S, O, τ, A)	

–  τ: O→T specifies type of each object	

–  If X subject, τ(X) ∈ TS	

–  If X object, τ(X) ∈ T – TS	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-20	

Create Rules	

•  Subject creation	

–  create subject s of type ts	

–  s must not exist as subject or object when operation

executed	

–  ts ∈ TS	

•  Object creation	

–  create object o of type to	

–  o must not exist as subject or object when operation

executed	

–  to ∈ T – TS	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-21	

Create Subject	

•  Precondition: s ∉ S	

•  Primitive command: create subject s of

type t	

•  Postconditions:	

–  S´ = S ∪{ s }, O´ = O ∪{ s }	

–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(s) = t	

–  (∀y ∈ O´)[a´[s, y] = ∅], (∀x ∈ S´)[a´[x, s] = ∅]	

–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-22	

Create Object	

•  Precondition: o ∉ O	

•  Primitive command: create object o of type

t	

•  Postconditions:	

–  S´ = S, O´ = O ∪ { o }	

–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(o) = t	

–  (∀x ∈ S´)[a´[x, o] = ∅]	

–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-23	

Definitions	

•  MTAM Model: TAM model without delete,
destroy	

– MTAM is Monotonic TAM	

•  α(x1:t1, ..., xn:tn) create command	

–  ti child type in α if any of create subject xi of

type ti or create object xi of type ti occur in α	

–  ti parent type otherwise	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-24	

Cyclic Creates	

command havoc(s : u, p : u, f : v, q : w)	

	

create subject p of type u;	

	

create object f of type v;	

	

enter own into a[s, p];	

	

enter r into a[q, p];	

	

enter own into a[p, f];	

	

enter r into a[p, f]	

end	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-25	

Creation Graph	

•  u, v child types	

•  u, w parent types	

•  Graph: lines from

parent types to child
types	

•  This one has cycles	

u	

v	

 w	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-26	

Acyclic Creates	

command havoc(s : u, p : u, f : v, q : w)	

	

create object f of type v;	

	

enter own into a[s, p];	

	

enter r into a[q, p];	

	

enter own into a[p, f];	

	

enter r into a[p, f]	

end	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-27	

Creation Graph	

•  v child type	

•  u, w parent types	

•  Graph: lines from

parent types to child
types	

•  This one has no cycles	

u	

v	

 w	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-28	

Theorems	

•  Safety decidable for systems with acyclic MTAM
schemes	

–  In fact, it’s NP-hard	

•  Safety for acyclic ternary MATM decidable in
time polynomial in the size of initial ACM	

–  “Ternary” means commands have no more than 3

parameters	

–  Equivalent in expressive power to MTAM	

Policies and All That	

•  Policy: says what is, and is not, allowed	

•  Key point is expression	

– How do you state it in a precise, understandable
way?	

– What do you want it to say?	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

 Slide #6-29	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Security Policy	

•  Policy partitions system states into:	

– Authorized (secure)	

•  These are states the system can enter	

– Unauthorized (nonsecure)	

•  If the system enters any of these states, it’s a
security violation	

•  Secure system	

– Starts in authorized state	

– Never enters unauthorized state	

Slide #6-30	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Confidentiality	

•  X set of entities, I information	

•  I satisfies confidentiality property with respect to X

if no x ∈ X can obtain information from I	

•  I can be disclosed to others	

•  Example:	

–  X set of students	

–  I final exam answer key	

–  I is confidential with respect to X if students cannot

obtain final exam answer key	

Slide #8-31	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Integrity	

•  X set of entities, I information	

•  I satisfies integrity property with respect to X if all

x ∈ X trust information in I	

•  Types of integrity:	

–  trust I, its conveyance and protection (data integrity)	

–  I information about origin of something or an identity

(origin integrity, authentication)	

–  I resource: means resource functions as it should

(assurance)	

Slide #6-32	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Availability	

•  X set of entities, I resource	

•  I satisfies availability property with respect to X if

all x ∈ X can access I	

•  Types of availability:	

–  traditional: x gets access or not	

–  quality of service: promised a level of access (for

example, a specific level of bandwidth) and not meet it,
even though some access is achieved	

Slide #6-33	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Policy Models	

•  Abstract description of a policy or class of
policies	

•  Focus on points of interest in policies	

– Security levels in multilevel security models	

– Separation of duty in Clark-Wilson model	

– Conflict of interest in Chinese Wall model	

Slide #6-34	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Types of Security Policies	

•  Military (governmental) security policy	

– Policy primarily protecting confidentiality	

•  Commercial security policy	

– Policy primarily protecting integrity	

•  Confidentiality policy	

– Policy protecting only confidentiality	

•  Integrity policy	

– Policy protecting only integrity	

Slide #6-35	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Integrity and Transactions	

•  Begin in consistent state	

–  “Consistent” defined by specification	

•  Perform series of actions (transaction)	

– Actions cannot be interrupted	

–  If actions complete, system in consistent state	

–  If actions do not complete, system reverts to

beginning (consistent) state	

Slide #6-36	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Trust	

Administrator installs patch	

1.  Trusts patch came from vendor, not

tampered with in transit	

2.  Trusts vendor tested patch thoroughly	

3.  Trusts vendor’s test environment

corresponds to local environment	

4.  Trusts patch is installed correctly	

Slide #6-37	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Trust in Formal Verification	

•  Gives formal mathematical proof that given
input i, program P produces output o as
specified	

•  Suppose a security-related program S
formally verified to work with operating
system O	

•  What are the assumptions?	

Slide #6-38	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Trust in Formal Methods	

1.  Proof has no errors	

•  Bugs in automated theorem provers	

2.  Preconditions hold in environment in which S is

to be used	

3. S transformed into executable Sʹ′ whose actions

follow source code	

–  Compiler bugs, linker/loader/library problems	

4.  Hardware executes Sʹ′ as intended	

–  Hardware bugs (Pentium f00f bug, for example)	

Slide #6-39	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Question	

•  Policy disallows cheating	

–  Includes copying homework, with or without

permission	

•  CS class has students do homework on computer	

•  Anne forgets to read-protect her homework file	

•  Bill copies it	

•  Who cheated?	

–  Anne, Bill, or both?	

Slide #6-40	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Answer Part 1	

•  Bill cheated	

–  Policy forbids copying homework assignment	

–  Bill did it	

–  System entered unauthorized state (Bill having a copy

of Anne’s assignment)	

•  If not explicit in computer security policy,

certainly implicit	

–  Not credible that a unit of the university allows

something that the university as a whole forbids, unless
the unit explicitly says so	

Slide #6-41	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Answer Part #2	

•  Anne didn’t protect her homework	

– Not required by security policy	

•  She didn’t breach security	

•  If policy said students had to read-protect

homework files, then Anne did breach
security	

– She didn’t do this	

Slide #6-42	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Mechanisms	

•  Entity or procedure that enforces some part
of the security policy	

– Access controls (like bits to prevent someone

from reading a homework file)	

– Disallowing people from bringing CDs and

floppy disks into a computer facility to control
what is placed on systems	

Slide #6-43	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Types of Access Control	

•  Discretionary Access Control (DAC, IBAC)	

–  individual user sets access control mechanism to allow

or deny access to an object	

•  Mandatory Access Control (MAC)	

–  system mechanism controls access to object, and
individual cannot alter that access	

•  Originator Controlled Access Control (ORCON)	

–  originator (creator) of information controls who can

access information	

Slide #6-44	

January 20, 2011	

 ECS 235B Winter Quarter 2011	

Policy Languages	

•  Express security policies in a precise way	

•  High-level languages	

– Policy constraints expressed abstractly	

•  Low-level languages	

– Policy constraints expressed in terms of
program options, input, or specific
characteristics of entities on system	

Slide #6-45	

