Lecture 8

- Bell-LaPadula model
 - Formal version
- Tranquility
 - Declassification
- The Controversy and System Z
 - What is a “model”?
Formal Model Definitions

- **S** subjects, **O** objects, **P** rights
 - Defined rights: r read, a write, w read/write, e empty
- **M** set of possible access control matrices
- **C** set of clearances/classifications, **K** set of categories, **L** = **C** × **K** set of security levels
- **F** = \{ (f_s, f_o, f_c) \}
 - f_s(s) maximum security level of subject s
 - f_c(s) current security level of subject s
 - f_o(o) security level of object o
More Definitions

• Hierarchy functions \(H: O \rightarrow P(O) \)

• Requirements
 1. \(o_i \neq o_j \Rightarrow h(o_i) \cap h(o_j) = \emptyset \)
 2. There is no set \(\{o_1, \ldots, o_k\} \subseteq O \) such that, for \(i = 1, \ldots, k \), \(o_{i+1} \in h(o_i) \) and \(o_{k+1} = o_1 \).

• Example
 – Tree hierarchy; take \(h(o) \) to be the set of children of \(o \)
 – No two objects have any common children (#1)
 – There are no loops in the tree (#2)
States and Requests

• \(V \) set of states
 – Each state is \((b, m, f, h)\)
 • \(b \) is like \(m \), but excludes rights not allowed by \(f \)

• \(R \) set of requests for access

• \(D \) set of outcomes
 – \(y \) allowed, \(n \) not allowed, \(i \) illegal, \(o \) error

• \(W \) set of actions of the system
 – \(W \subseteq R \times D \times V \times V \)
History

- $X = R^N$ set of sequences of requests
- $Y = D^N$ set of sequences of decisions
- $Z = V^N$ set of sequences of states

Interpretation
- At time $t \in N$, system is in state $z_{t-1} \in V$; request $x_t \in R$ causes system to make decision $y_t \in D$, transitioning the system into a (possibly new) state $z_t \in V$

System representation: $\Sigma(R, D, W, z_0) \in X \times Y \times Z$
- $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_{t-1}, z_t) \in W$ for all t
- (x, y, z) called an appearance of $\Sigma(R, D, W, z_0)$
Example

- $S = \{ s \}, O = \{ o \}, P = \{ r, w \}$
- $C = \{ \text{High}, \text{Low} \}, K = \{ \text{All} \}$
- For every $f \in F$, either $f_c(s) = (\text{High}, \{ \text{All} \})$ or $f_c(s) = (\text{Low}, \{ \text{All} \})$
- Initial State:
 - $b_1 = \{ (s, o, r) \}, m_1 \in M$ gives s read access over o, and for $f_1 \in F, f_{c,1}(s) = (\text{High}, \{ \text{All} \}), f_{o,1}(o) = (\text{Low}, \{ \text{All} \})$
 - Call this state $v_0 = (b_1, m_1, f_1, h_1) \in V$.
First Transition

• Now suppose in state v_0: $S = \{ s, s' \}$
• Suppose $f_{c,1}(s') = (\text{Low}, \{\text{All}\})$
• $m_1 \in M$ gives s and s' read access over o
• As s' not written to o, $b_1 = \{ (s, o, r) \}$
• $z_0 = v_0$; if s' requests r_1 to write to o:
 – System decides $d_1 = y$
 – New state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 – $b_2 = \{ (s, o, r), (s', o, \underline{w}) \}$
 – Here, $x = (r_1), y = (y), z = (v_0, v_1)$
Second Transition

- Current state $\nu_1 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{(s, o, r), (s', o, w)\}$
 - $f_{c,1}(s) = (\text{High}, \{\text{All}\}), f_{o,1}(o) = (\text{Low}, \{\text{All}\})$

- s' requests r_2 to write to o:
 - System decides $d_2 = \text{n} \ (\text{as} \ f_{c,1}(s) \ \text{dom} \ f_{o,1}(o))$
 - New state $\nu_2 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{(s, o, r), (s', o, w)\}$
 - So, $x = (r_1, r_2), y = (y, n), z = (\nu_0, \nu_1, \nu_2)$, where $\nu_2 = \nu_1$
Basic Security Theorem

- Define action, secure formally
 - Using a bit of foreshadowing for “secure”
- Restate properties formally
 - Simple security condition
 - *-property
 - Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem
Action

- A request and decision that causes the system to move from one state to another
 - Final state may be the same as initial state
- \((r, d, v, v') \in R \times D \times V \times V\) is an action of \(\Sigma(R, D, W, z_0)\) iff there is an \((x, y, z) \in \Sigma(R, D, W, z_0)\) and a \(t \in N\) such that \((r, d, v, v') = (x_t, y_t, z_t, z_{t-1})\)
 - Request \(r\) made when system in state \(v\); decision \(d\) moves system into (possibly the same) state \(v'\)
 - Correspondence with \((x_t, y_t, z_t, z_{t-1})\) makes states, requests, part of a sequence
Simple Security Condition

- \((s, o, p) \in S \times O \times P\) satisfies the simple security condition relative to \(f\) (written \(ssc \ rel \ f\)) iff one of the following holds:
 1. \(p = e\) or \(p = a\)
 2. \(p = r\) or \(p = w\) and \(f_s(s) \ \text{dom} \ f_o(o)\)
- Holds vacuously if rights do not involve reading
- If all elements of \(b\) satisfy \(ssc \ rel \ f\), then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition
Necessary and Sufficient

- \(\Sigma(R, D, W, z_0) \) satisfies the simple security condition for any secure state \(z_0 \) iff for every action \((r, d, (b, m, f, h), (b', m', f', h'))\), \(W \) satisfies
 - Every \((s, o, p) \in b - b'\) satisfies \(ssc rel f\)
 - Every \((s, o, p) \in b'\) that does not satisfy \(ssc rel f\) is not in \(b\)

- Note: “secure” means \(z_0 \) satisfies \(ssc rel f\)
- First says every \((s, o, p)\) added satisfies \(ssc rel f\); second says any \((s, o, p)\) in \(b'\) that does not satisfy \(ssc rel f\) is deleted
*-Property

- \(b(s: p_1, \ldots, p_n) \) set of all objects that \(s \) has \(p_1, \ldots, p_n \) access to

- State \((b, m, f, h)\) satisfies the *-property iff for each \(s \in S \) the following hold:
 1. \(b(s: \text{a}) \neq \emptyset \Rightarrow [\forall o \in b(s: \text{a}) [f_o(o) \text{ dom } f_c(s)]] \)
 2. \(b(s: \text{w}) \neq \emptyset \Rightarrow [\forall o \in b(s: \text{w}) [f_o(o) = f_c(s)]] \)
 3. \(b(s: \text{r}) \neq \emptyset \Rightarrow [\forall o \in b(s: \text{r}) [f_c(s) \text{ dom } f_o(o)]] \)

- Idea: for writing, object dominates subject; for reading, subject dominates object
*-Property

- If all states satisfy simple security condition, system satisfies simple security condition
- If a subset S' of subjects satisfy *-property, then *-property satisfied relative to $S' \subseteq S$
- Note: tempting to conclude that *-property includes simple security condition, but this is false
 - See condition placed on w right for each
Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies the following for every $s \in S'$
 - Every $(s, o, p) \in b - b'$ satisfies the *-property relative to S'
 - Every $(s, o, p) \in b'$ that does not satisfy the *-property relative to S' is not in b

- Note: “secure” means z_0 satisfies *-property relative to S'

- First says every (s, o, p) added satisfies the *-property relative to S'; second says any (s, o, p) in b' that does not satisfy the *-property relative to S' is deleted
Discretionary Security Property

- State (b, m, f, h) satisfies the discretionary security property iff, for each $(s, o, p) \in b$, then $p \in m[s, o]$
- Idea: if s can read o, then it must have rights to do so in the access control matrix m
- This is the discretionary access control part of the model
 - The other two properties are the mandatory access control parts of the model
Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the ds-property for any secure state z_0 iff, for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies:
 – Every $(s, o, p) \in b - b'$ satisfies the ds-property
 – Every $(s, o, p) \in b'$ that does not satisfy the ds-property is not in b

• Note: “secure” means z_0 satisfies ds-property

• First says every (s, o, p) added satisfies the ds-property; second says any (s, o, p) in b' that does not satisfy the *-property is deleted
A system is secure iff it satisfies:

- Simple security condition
- *-property
- Discretionary security property

A state meeting these three properties is also said to be secure.
Basic Security Theorem

- $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and W satisfies the conditions for the preceding three theorems
 - The theorems are on the slides titled “Necessary and Sufficient”
Rule

- \(\rho : R \times V \rightarrow D \times V \)
- Takes a state and a request, returns a decision and a (possibly new) state
- Rule \(\rho \) \emph{ssc-preserving} if for all \((r, v) \in R \times V \) and \(v\) satisfying \(ssc\ rel\ f\), \(\rho(r, v) = (d, v') \) means that \(v' \) satisfies \(ssc\ rel\ f'\).
 - Similar definitions for \(*\)-property, \(ds\)-property
 - If rule meets all 3 conditions, it is \emph{security-preserving}
Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in a state
 – if two rules act on a read request in state v …

• Solution: define relation $W(\omega)$ for a set of rules $\omega = \{ \rho_1, \ldots, \rho_m \}$ such that a state $(r, d, v', v) \in W(\omega)$ iff either
 – $d = i$; or
 – for exactly one integer j, $\rho_j(r, v) = (d, v')$

• Either request is illegal, or only one rule applies
Rules Preserving SSC

Let ω be set of ssc-preserving rules. Let state z_0 satisfy simple security condition. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies simple security condition

Proof: by contradiction.

Choose $(x, y, z) \in \Sigma(R, D, W(\omega), z_0)$ as state not satisfying simple security condition; then choose $t \in N$ such that (x_t, y_t, z_t) is first appearance not meeting simple security condition

As $(x_t, y_t, z_t, z_{t-1}) \in W(\omega)$, there is unique rule $\rho \in \omega$ such that $\rho(x_t, z_{t-1}) = (y_t, z_t)$ and $y_t \neq i$.

As ρ ssc-preserving, and z_{t-1} satisfies simple security condition, then z_t meets simple security condition, contradiction.
Adding States Preserving SSC

• Let \(v = (b, m, f, h) \) satisfy simple security condition. Let \((s, o, p) \notin b, b' = b \cup \{ (s, o, p) \} \), and \(v' = (b', m, f, h) \).

Then \(v' \) satisfies simple security condition iff:

1. Either \(p = e \) or \(p = a \); or
2. Either \(p = r \) or \(p = w \), and \(f_c(s) \text{ dom } f_o(o) \)

– Proof

1. Immediate from definition of simple security condition and \(v' \) satisfying \(ssc \ rel f \)
2. \(v' \) satisfies simple security condition means \(f_c(s) \text{ dom } f_o(o) \), and for converse, \((s, o, p) \in b' \) satisfies \(ssc \ rel f \), so \(v' \) satisfies simple security condition
Rules, States Preserving $*$-Property

- Let ω be set of $*$-property-preserving rules, state z_0 satisfies $*$-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies $*$-property
Rules, States Preserving ds-Property

• Let ω be set of ds-property-preserving rules, state z_0 satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property
Combining

- Let ρ be a rule and $\rho(r, v) = (d, v')$, where $v = (b, m, f, h)$ and $v' = (b', m', f', h')$. Then:
 1. If $b' \subseteq b, f' = f$, and v satisfies the simple security condition, then v' satisfies the simple security condition.
 2. If $b' \subseteq b, f' = f$, and v satisfies the *-property, then v' satisfies the *-property.
 3. If $b' \subseteq b, m[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and v satisfies the ds-property, then v' satisfies the ds-property.
Proof

1. Suppose \(\nu \) satisfies simple security property.
 a) \(b' \subseteq b \) and \((s, o, r) \in b' \) implies \((s, o, r) \in b \)
 b) \(b' \subseteq b \) and \((s, o, w) \in b' \) implies \((s, o, w) \in b \)
 c) So \(f_c(s) \text{ dom } f_o(o) \)
 d) But \(f' = f \)
 e) Hence \(f'_c(s) \text{ dom } f'_o(o) \)
 f) So \(\nu' \) satisfies simple security condition

2, 3 proved similarly
Example Instantiation: Multics

- 11 rules affect rights:
 - set to request, release access
 - set to give, remove access to different subject
 - set to create, reclassify objects
 - set to remove objects
 - set to change subject security level
- Set of “trusted” subjects $S_T \subseteq S$
 - *-property not enforced; subjects trusted not to violate
- $\Delta(\rho)$ domain
 - determines if components of request are valid
get-read Rule

• Request \(r = (\text{get}, s, o, \overline{r}) \)

 – \(s \) gets (requests) the right to read \(o \)

• Rule is \(\rho_1(r, v) \):

 \[
 \begin{align*}
 \text{if } (r \neq \Delta(\rho_1)) \text{ then } \rho_1(r, v) &= (\overline{i}, v); \\
 \text{else if } (f_s(s) \text{ dom } f_o(o) \text{ and } [s \in S_T \text{ or } f_c(s) \text{ dom } f_o(o)]) \text{ and } r \in m[s, o]) \\
 &\quad \text{then } \rho_1(r, v) = (y, (b \cup \{ (s, o, \overline{r}) \}, m, f, h)); \\
 \text{else } \rho_1(r, v) &= (n, v);
 \end{align*}
 \]
Security of Rule

- The get-read rule preserves the simple security condition, the *-property, and the ds-property

 - Proof
 - Let \(v \) satisfy all conditions. Let \(\rho_1(r, v) = (d, v') \). If \(v' = v \), result is trivial. So let \(v' = (b \cup \{ (s_2, o, r) \}, m, f, h) \).
Proof

• Consider the simple security condition.
 – From the choice of v', either $b' - b = \emptyset$ or $\{ (s_2, o, r) \}$
 – If $b' - b = \emptyset$, then $\{ (s_2, o, r) \} \in b$, so $v = v'$, proving that v' satisfies the simple security condition.
 – If $b' - b = \{ (s_2, o, r) \}$, because the get-read rule requires that $f_c(s) \text{ dom } f_o(o)$, an earlier result says that v' satisfies the simple security condition.
Proof

• Consider the \(*\)-property.
 – Either $s_2 \in S_T$ or $f_c(s) \in dom(f_o(o))$ from the definition of get-read
 – If $s_2 \in S_T$, then s_2 is trusted, so \(*\)-property holds by definition of trusted and S_T.
 – If $f_c(s) \in dom(f_o(o))$, an earlier result says that v' satisfies the simple security condition.
Proof

• Consider the discretionary security property.
 – Conditions in the get-read rule require $r \in m[s, o]$ and either $b' - b = \emptyset$ or \{ (s_2, o, r) \}
 – If $b' - b = \emptyset$, then \{ (s_2, o, r) \} $\subseteq b$, so $v = v'$, proving that v' satisfies the simple security condition.
 – If $b' - b = \{ (s_2, o, r) \}$, then \{ (s_2, o, r) \} $\notin b$, an earlier result says that v' satisfies the ds-property.
give-read Rule

• Request \(r = (s_1, \text{give}, s_2, o, _r) \)
 – \(s_1 \) gives (request to give) \(s_2 \) the (discretionary) right to read \(o \)
 – Rule: can be done if giver can alter parent of object
 • If object or parent is root of hierarchy, special authorization required

• Useful definitions
 – \(\text{root}(o) \): root object of hierarchy \(h \) containing \(o \)
 – \(\text{parent}(o) \): parent of \(o \) in \(h \) (so \(o \in h(\text{parent}(o)) \))
 – \(\text{canallow}(s, o, v) \): \(s \) specially authorized to grant access when
 object or parent of object is root of hierarchy
 – \(m \land m[s, o] \leftarrow r \): access control matrix \(m \) with \(r \) added to \(m[s, o] \)
give-read Rule

- Rule is $\rho_6(r, v)$:

 \[
 \text{if } (r \neq \Delta(\rho_6)) \text{ then } \rho_6(r, v) = (i, v); \\
 \text{else if } ([o \neq root(o) \text{ and } parent(o) \neq root(o) \text{ and } parent(o) \in b(s_1:w)] \text{ or } \\
 [parent(o) = root(o) \text{ and } canallow(s_1, o, v)] \text{ or } \\
 [o = root(o) \text{ and } canallow(s_1, o, v)] \text{) then } \rho_6(r, v) = (y, (b, m \land m[s_2, o] \leftarrow r, f, h)); \\
 \text{else } \rho_1(r, v) = (n, v);
 \]
Security of Rule

- The *give-read* rule preserves the simple security condition, the *-property, and the ds-property
 - Proof: Let \(v \) satisfy all conditions. Let \(\rho_1(r, v) = (d, v') \).
 If \(v' = v \), result is trivial. So let \(v' = (b, m[s_2, o] \leftarrow r, f, h) \).
 So \(b' = b, f' = f, m[x, y] = m'[x, y] \) for all \(x \in S \) and \(y \in O \) such that \(x \neq s \) and \(y \neq o \), and \(m[s, o] \subseteq m'[s, o] \). Then by earlier result, \(v' \) satisfies the simple security condition, the *-property, and the ds-property.
Principle of Tranquility

- Raising object’s security level
 - Information once available to some subjects is no longer available
 - Usually assume information has already been accessed, so this does nothing

- Lowering object’s security level
 - The *declassification problem*
 - Essentially, a “write down” violating *-property
 - Solution: define set of trusted subjects that sanitize or remove sensitive information before security level lowered
Types of Tranquility

• Strong Tranquility
 – The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system

• Weak Tranquility
 – The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system
Example of Weak Tranquility

- Only one subject at TOP SECRET
- Document at CONFIDENTIAL
- New CONFIDENTIAL user to be added
 - User should not see document
- Raise document to SECRET
 - Subject still cannot write document
 - All security relationships unchanged
Declassification

- Lowering the security level of a document
 - Direct violation of the “no writes down” rule
 - May be necessary for legal or other purposes

- Declassification policy
 - Part of security policy covering this
 - Here, “secure” means classification changes to a lower level in accordance with declassification policy
Principles

• Principle of Semantic Consistency
• Principle of Occlusion
• Principle of Conservativity
• Principle of Monotonicity of Release
Principle of Semantic Consistency

• As long as the semantics of the parts of the system not involved in the declassification do not change, those parts may be changed without affecting system security
 – No leaking due to semantic incompatibilities
 – Delimited release: allow declassification, release of information only through specific channels (“escape hatches”)
Principle of Occlusion

- Declassification mechanism cannot conceal improper lowering of security levels
 - Robust declassification property: attacker cannot use escape hatches to obtain information unless it is properly declassified
Other Principles

• Principle of Conservativity
 – Absent declassification, system is secure

• Principle of Monotonicity of Release
 – When declassification is performed in an authorized manner by authorized subjects, the system remains secure

Idea: declassifying information in accordance with declassification policy does not affect security
Controversy

• McLean:
 – “value of the BST is much overrated since there is a great deal more to security than it captures. Further, what is captured by the BST is so trivial that it is hard to imagine a realistic security model for which it does not hold.”
 – Basis: given assumptions known to be non-secure, BST can prove a non-secure system to be secure
†-Property

• State \((b,m,f,h)\) satisfies the †-property iff for each \(s \in S\) the following hold:

1. \(b(s: _a) \neq \emptyset \Rightarrow [\forall o \in b(s: _a) [f_c(s) \text{ dom } f_o(o)]]\)
2. \(b(s: _w) \neq \emptyset \Rightarrow [\forall o \in b(s: _w) [f_o(o) = f_c(s)]]\)
3. \(b(s: _r) \neq \emptyset \Rightarrow [\forall o \in b(s: _r) [f_c(s) \text{ dom } f_o(o)]]\)

• Idea: for writing, subject dominates object; for reading, subject also dominates object

• Differs from \(*\)-property in that the mandatory condition for writing is reversed
 – For \(*\)-property, it’s object dominates subject
Analogues

The following two theorems can be proved

- \(\Sigma(R, D, W, z_0) \) satisfies the \(\dagger \)-property relative to \(S' \subseteq S \) for any secure state \(z_0 \) iff for every action \((r, d, (b, m, f, h), (b', m', f', h'))\), \(W \) satisfies the following for every \(s \in S' \)
 - Every \((s, o, p) \in b - b' \) satisfies the \(\dagger \)-property relative to \(S' \)
 - Every \((s, o, p) \in b' \) that does not satisfy the \(\dagger \)-property relative to \(S' \) is not in \(b \)

- \(\Sigma(R, D, W, z_0) \) is a secure system if \(z_0 \) is a secure state and \(W \) satisfies the conditions for the simple security condition, the \(\dagger \)-property, and the ds-property.
Problem

• This system is clearly non-secure!
 – Information flows from higher to lower because of the †-property
Discussion

• Role of Basic Security Theorem is to demonstrate that rules preserve security

• Key question: what is security?
 – Bell-LaPadula defines it in terms of 3 properties (simple security condition, |-property, discretionary security property)
 – Theorems are assertions about these properties
 – Rules describe changes to a particular system instantiating the model
 – Showing system is secure requires proving rules preserve these 3 properties
Rules and Model

• Nature of rules is irrelevant to model
• Model treats “security” as axiomatic
• Policy defines “security”
 – This instantiates the model
 – Policy reflects the requirements of the systems
• McLean’s definition differs from Bell-LaPadula
 – … and is not suitable for a confidentiality policy
• Analysts cannot prove “security” definition is appropriate through the model
System Z

- System supporting weak tranquility
- On any request, system downgrades all subjects and objects to lowest level and adds the requested access permission
 - Let initial state satisfy all 3 properties
 - Successive states also satisfy all 3 properties
- Clearly not secure
 - On first request, everyone can read everything
Reformulation of Secure Action

• Given state that satisfies the 3 properties, the action transforms the system into a state that satisfies these properties and eliminates any accesses present in the transformed state that would violate the property in the initial state, then the action is secure

• BST holds with these modified versions of the 3 properties
Reconsider System Z

• Initial state:
 – subject s, object o
 – $C = \{\text{High, Low}\}$, $K = \{\text{All}\}$
• Take:
 – $f_c(s) = (\text{Low}, \{\text{All}\})$, $f_o(o) = (\text{High}, \{\text{All}\})$
 – $m[s, o] = \{w\}$, and $b = \{(s, o, w)\}$.
• s requests r access to o
• Now:
 – $f'_o(o) = (\text{Low}, \{\text{All}\})$
 – $(s, o, r) \in b'$, $m'[s, o] = \{r, w\}$
Non-Secure System Z

• As \((s, o, r) \in b' - b\) and \(f_o(o) \text{ dom } f_c(s)\), access added that was illegal in previous state
 – Under the new version of the Basic Security Theorem, System Z is not secure
 – Under the old version of the Basic Security Theorem, as \(f'_c(s) = f'_o(o)\), System Z is secure
Response: What Is Modeling?

• Two types of models
 1. Abstract physical phenomenon to fundamental properties
 2. Begin with axioms and construct a structure to examine the effects of those axioms

• Bell-LaPadula Model developed as a model in the first sense
 – McLean assumes it was developed as a model in the second sense
Reconciling System Z

• Different definitions of security create different results
 – Under one (original definition in Bell-LaPadula Model), System Z is secure
 – Under other (McLean’s definition), System Z is not secure