
Lecture 11	

•  Role-Based Access Control	

•  Composition of policies	

•  Noninterference	

– Access control matrix interpretation	

	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-1	

RBAC	

•  Access depends on function, not identity	

– Example:	

•  Allison, bookkeeper for Math Dept, has access to
financial records.	

•  She leaves.	

•  Betty hired as the new bookkeeper, so she now has

access to those records	

– The role of “bookkeeper” dictates access, not

the identity of the individual.	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-2	

Definitions	

•  Role r: collection of job functions	

–  trans(r): set of authorized transactions for r	

•  Active role of subject s: role s is currently in	

–  actr(s)	

•  Authorized roles of a subject s: set of roles s is

authorized to assume	

–  authr(s)	

•  canexec(s, t) iff subject s can execute transaction t
at current time	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-3	

Axioms	

•  Let S be the set of subjects and T the set of

transactions.	

•  Rule of role assignment:	

 (∀s ∈ S)(∀t ∈ T) [canexec(s, t) → actr(s) ≠ ∅]	

–  If s can execute a transaction, it has a role	

–  This ties transactions to roles	

•  Rule of role authorization: 	

 	

 	

	

(∀s ∈ S) [actr(s) ⊆ authr(s)]	

–  Subject must be authorized to assume an active role
(otherwise, any subject could assume any role)	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-4	

Axiom	

•  Rule of transaction authorization: 	

	

(∀s ∈ S)(∀t ∈ T) 	

 	

 	

 	

	

	

[canexec(s, t) → t ∈ trans(actr(s))].	

–  If a subject s can execute a transaction, then the
transaction is an authorized one for the role s
has assumed	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-5	

Containment of Roles	

•  Trainer can do all transactions that trainee
can do (and then some). This means role r
contains role rʹ′ (r > rʹ′). So:	

(∀s ∈ S)[rʹ′ ∈ authr(s) ∧ r > rʹ′ → r ∈ authr(s)]	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-6	

Separation of Duty	

•  Let r be a role, and let s be a subject such that
r ∈ auth(s). Then the predicate meauth(r) (for
mutually exclusive authorizations) is the set of
roles that s cannot assume because of the
separation of duty requirement.	

•  Separation of duty:	

(∀r1, r2 ∈ R) [r2 ∈ meauth(r1) →	

 [(∀s ∈ S) [r1∈ authr(s) → r2 ∉ authr(s)]]]	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-7	

Multiple Policies	

•  Problem	

–  Policy composition	

•  Noninterference	

–  HIGH inputs affect LOW outputs	

•  Nondeducibility	

–  HIGH inputs can be determined from LOW outputs	

•  Restrictiveness	

–  When can policies be composed successfully	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-8	

Composition of Policies	

•  Two organizations have two security
policies	

•  They merge	

– How do they combine security policies to

create one security policy?	

– Can they create a coherent, consistent security

policy?	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-9	

The Problem	

•  Single system with 2 users	

– Each has own virtual machine	

– Holly at system high, Lara at system low so

they cannot communicate directly	

•  CPU shared between VMs based on load	

– Forms a covert channel through which Holly,
Lara can communicate	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-10	

Example Protocol	

•  Holly, Lara agree:	

–  Begin at noon	

–  Lara will sample CPU utilization every minute	

–  To send 1 bit, Holly runs program	

•  Raises CPU utilization to over 60%	

–  To send 0 bit, Holly does not run program	

•  CPU utilization will be under 40%	

•  Not “writing” in traditional sense	

–  But information flows from Holly to Lara	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-11	

Policy vs. Mechanism	

•  Can be hard to separate these	

•  In the abstract: CPU forms channel along which

information can be transmitted	

–  Violates *-property	

–  Not “writing” in traditional sense	

•  Conclusions:	

–  Model does not give sufficient conditions to prevent

communication, or	

–  System is improperly abstracted; need a better

definition of “writing”	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-12	

Composition of Bell-LaPadula	

•  Why?	

–  Some standards require secure components to be connected to
form secure (distributed, networked) system	

•  Question	

–  Under what conditions is this secure?	

•  Assumptions	

–  Implementation of systems precise with respect to each system’s

security policy	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-13	

Issues	

•  Compose the lattices	

•  What is relationship among labels?	

–  If the same, trivial	

–  If different, new lattice must reflect the

relationships among the levels	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-14	

Example	

LOW

(HIGH, {EAST}) (HIGH, {WEST})

(HIGH, {EAST, WEST})

LOW

(TS, {EAST}) (TS, {SOUTH})

(TS, {EAST, SOUTH})

(S, {EAST, SOUTH})

(S, {EAST}) (S, {SOUTH})

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-15	

Analysis	

•  Assume S < HIGH < TS	

•  Assume SOUTH, EAST, WEST different	

•  Resulting lattice has:	

–  4 clearances (LOW < S < HIGH < TS)	

–  3 categories (SOUTH, EAST, WEST)	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-16	

Same Policies	

•  If we can change policies that components
must meet, composition is trivial (as above)	

•  If we cannot, we must show composition
meets the same policy as that of
components; this can be very hard	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-17	

Different Policies	

•  What does “secure” now mean?	

•  Which policy (components) dominates?	

•  Possible principles:	

– Any access allowed by policy of a component
must be allowed by composition of components
(autonomy)	

– Any access forbidden by policy of a component
must be forbidden by composition of
components (security)	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-18	

Implications	

•  Composite system satisfies security policy
of components as components’ policies take
precedence	

•  If something neither allowed nor forbidden
by principles, then:	

– Allow it (Gong & Qian)	

– Disallow it (Fail-Safe Defaults)	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-19	

Example	

•  System X: Bob can’t access Alice’s files	

•  System Y: Eve, Lilith can access each

other’s files	

•  Composition policy:	

– Bob can access Eve’s files	

– Lilith can access Alice’s files	

•  Question: can Bob access Lilith’s files?	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-20	

Solution (Gong & Qian)	

•  Notation:	

–  (a, b): a can read b’s files	

– AS(x): access set of system x	

•  Set-up:	

– AS(X) = ∅	

– AS(Y) = { (Eve, Lilith), (Lilith, Eve) }	

– AS(X∪Y) = { (Bob, Eve), (Lilith, Alice),	

	

 	

 	

 	

 (Eve, Lilith), (Lilith, Eve) }	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-21	

Solution (Gong & Qian)	

•  Compute transitive closure of AS(X∪Y):	

–  AS(X∪Y)+ = { (Bob, Eve), (Bob, Lilith), (Bob, Alice),	

	

 	

 	

 	

(Eve, Lilith), (Eve, Alice),	

	

 	

 	

 	

 	

(Lilith, Eve), (Lilith, Alice) }	

•  Delete accesses conflicting with policies of
components:	

–  Delete (Bob, Alice)	

•  (Bob, Lilith) in set, so Bob can access Lilith’s files	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-22	

Idea	

•  Composition of policies allows accesses not mentioned by

original policies	

•  Generate all possible allowed accesses	

–  Computation of transitive closure	

•  Eliminate forbidden accesses	

–  Removal of accesses disallowed by individual access policies	

•  Everything else is allowed	

•  Note: determining if access allowed is of polynomial

complexity	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-23	

Interference	

•  Think of it as something used in
communication	

– Holly/Lara example: Holly interferes with the

CPU utilization, and Lara detects it—
communication	

•  Plays role of writing (interfering) and
reading (detecting the interference)	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-24	

Model	

•  System as state machine	

–  Subjects S = { si }	

–  States Σ = { σi }	

–  Outputs O = { oi }	

–  Commands Z = { zi }	

–  State transition commands C = S × Z	

•  Note: no inputs	

–  Encode either as selection of commands or in state transition

commands	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-25	

Functions	

•  State transition function T: C×Σ→Σ	

– Describes effect of executing command c in

state σ	

•  Output function P: C×Σ→O	

– Output of machine when executing command c
in state σ	

•  Initial state is σ0	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-26	

Example	

•  Users Heidi (high), Lucy (low) 	

•  2 bits of state, H (high) and L (low)	

– System state is (H, L) where H, L are 0, 1	

•  2 commands: xor0, xor1 do xor with 0, 1	

– Operations affect both state bits regardless of
whether Heidi or Lucy issues it	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-27	

Example: 2-bit Machine	

•  S = { Heidi, Lucy }	

•  Σ = { (0,0), (0,1), (1,0), (1,1) }	

•  C = { xor0, xor1 }	

Input States (H, L)	

(0,0)	

 (0,1)	

 (1,0)	

 (1,1)	

xor0	

 (0,0)	

 (0,1)	

 (1,0)	

 (1,1)	

xor1	

 (1,1)	

 (1,0)	

 (0,1)	

 (0,0)	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-28	

Outputs and States	

•  T is inductive in first argument, as	

T(c0, σ0) = σ1; T(ci+1, σi+1) = T(ci+1,T(ci,σi))	

•  Let C* be set of possible sequences of
commands in C	

•  T*: C*×Σ→Σ and	

cs = c0…cn ⇒ T*(cs,σi) = T(cn,…,T(c0,σi)…)	

•  P similar; define P* similarly	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-29	

Projection	

•  T*(cs,σi) sequence of state transitions	

•  P*(cs,σi) corresponding outputs	

•  proj(s, cs, σi) set of outputs in P*(cs,σi) that

subject s authorized to see	

–  In same order as they occur in P*(cs,σi)	

– Projection of outputs for s	

•  Intuition: list of outputs after removing
outputs that s cannot see	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-30	

Purge	

•  G ⊆ S, G a group of subjects	

•  A ⊆ Z, A a set of commands	

•  πG(cs) subsequence of cs with all elements

(s,z), s ∈ G deleted	

•  πA(cs) subsequence of cs with all elements

(s,z), z ∈ A deleted	

•  πG,A(cs) subsequence of cs with all elements

(s,z), s ∈ G and z ∈ A deleted	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-31	

Example: 2-bit Machine	

•  Let σ0 = (0,1)	

•  3 commands applied:	

–  Heidi applies xor0	

–  Lucy applies xor1	

–  Heidi applies xor1	

•  cs = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor0))	

•  Output is 011001	

–  Shorthand for sequence (0,1)(1,0)(0,1)	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-32	

Example	

•  proj(Heidi, cs, σ0) = 011001	

•  proj(Lucy, cs, σ0) = 101	

•  πLucy(cs) = ((Heidi, xor0), (Heidi, xor1))	

•  πLucy,xor1(cs) = ((Heidi, xor0), (Heidi, xor1))	

•  πHeidi (cs) = ((Lucy, xor1))	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-33	

Example	

•  πLucy,xor0(cs) = ((Heidi, xor0), (Lucy, xor1),
	

 	

 	

 	

 	

 (Heidi, xor1))	

•  πHeidi,xor0(cs) = πxor0(cs) = ((Lucy, xor1),
	

 	

 	

 	

 	

 (Heidi, xor1))	

•  πHeidi, xor1(cs) = ((Heidi, xor0), (Lucy, xor1))	

•  πxor1(cs) = ((Heidi, xor0))	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-34	

Noninterference	

•  Intuition: Set of outputs Lucy can see corresponds

to set of inputs she can see, there is no interference	

•  Formally: G, Gʹ′ ⊆ S, G ≠ Gʹ′; A ⊆ Z; Users in G

executing commands in A are noninterfering with
users in Gʹ′ iff for all cs ∈ C*, and for all s ∈ Gʹ′,	

proj(s, cs, σi) = proj(s, πG,A(cs), σi)	

–  Written A,G :| Gʹ′	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-35	

Example	

•  Let cs = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor1))

and σ0 = (0, 1)	

•  Take G = { Heidi }, Gʹ′ = { Lucy }, A = ∅	

•  πHeidi(cs) = ((Lucy, xor1))	

–  So proj(Lucy, πHeidi(cs), σ0) = 0	

•  proj(Lucy, cs, σ0) = 101	

•  So { Heidi } :| { Lucy } is false	

–  Makes sense; commands issued to change H bit also
affect L bit	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-36	

Example	

•  Same as before, but Heidi’s commands affect H

bit only, Lucy’s the L bit only	

•  Output is 0H0L1H	

•  πHeidi(cs) = ((Lucy,xor1))	

–  So proj(Lucy, πHeidi(cs), σ0) = 0	

•  proj(Lucy, cs, σ0) = 0	

•  So { Heidi } :| { Lucy } is true	

–  Makes sense; commands issued to change H bit now do
not affect L bit	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-37	

Security Policy	

•  Partitions systems into authorized,
unauthorized states	

•  Authorized states have no forbidden
interferences	

•  Hence a security policy is a set of
noninterference assertions	

– See previous definition	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-38	

Alternative Development	

•  System X is a set of protection domains	

	

 	

D = { d1, …, dn }	

•  When command c executed, it is executed
in protection domain dom(c)	

•  Give alternate versions of definitions shown
previously	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-39	

Output-Consistency	

•  c ∈ C, dom(c) ∈ D	

•  ~dom(c) equivalence relation on states of system X	

•  ~dom(c) output-consistent if	

	

σa ~dom(c) σb ⇒ P(c, σa) = P(c, σb)	

•  Intuition: states are output-consistent if for subjects in dom
(c), projections of outputs for both states after c are the
same	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-40	

Security Policy	

•  D = { d1, …, dn }, di a protection domain	

•  r: D×D a reflexive relation	

•  Then r defines a security policy	

•  Intuition: defines how information can flow

around a system	

–  dirdj means info can flow from di to dj	

–  dirdi as info can flow within a domain	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-41	

Projection Function	

•  πʹ′ analogue of π, earlier	

•  Commands, subjects absorbed into protection

domains	

•  d ∈ D, c ∈ C, cs ∈ C*	

•  πʹ′d(ν) = ν	

•  πʹ′d(csc) = πʹ′d(cs)c 	

if dom(c)rd	

•  πʹ′d(csc) = πʹ′d(cs)	

otherwise	

•  Intuition: if executing c interferes with d, then c is

visible; otherwise, as if c never executed	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-42	

Noninterference-Secure	

•  System has set of protection domains D	

•  System is noninterference-secure with respect to policy r if	

P*(c, T*(cs, σ0)) = P*(c, T*(πʹ′d(cs), σ0))	

•  Intuition: if executing cs causes the same transitions for

subjects in domain d as does its projection with respect to
domain d, then no information flows in violation of the
policy	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-43	

Lemma	

•  Let T*(cs, σ0) ~d T*(πʹ′d(cs), σ0) for c ∈ C	

•  If ~d output-consistent, then system is

noninterference-secure with respect to
policy r	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-44	

Proof	

•  d = dom(c) for c ∈ C	

•  By definition of output-consistent,	

T*(cs, σ0) ~d T*(πʹ′d(cs), σ0)	

	

implies	

P*(c,T*(cs, σ0)) = P*(c,T*(πʹ′d(cs), σ0))	

•  This is definition of noninterference-secure

with respect to policy r	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-45	

Unwinding Theorem	

•  Links security of sequences of state
transition commands to security of
individual state transition commands	

•  Allows you to show a system design is ML
secure by showing it matches specs from
which certain lemmata derived	

– Says nothing about security of system, because

of implementation, operation, etc. issues	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-46	

Locally Respects	

•  r is a policy	

•  System X locally respects r if dom(c) being

noninterfering with d ∈ D implies σa ~d T(c,
σa)	

•  Intuition: applying c under policy r to
system X has no effect on domain d when X
locally respects r	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-47	

Transition-Consistent	

•  r policy, d ∈ D	

•  If σa ~d σb implies T(c, σa) ~d T(c, σb),

system X transition-consistent under r	

•  Intuition: command c does not affect

equivalence of states under policy r	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-48	

Lemma	

•  c1, c2 ∈ C, d ∈ D	

•  For policy r, dom(c1)rd and dom(c2)rd	

•  Then	

T*(c1c2,σ) = T(c1,T(c2,σ)) = T(c2,T(c1,σ))	

•  Intuition: if info can flow from domains of

commands into d, then order doesn’t affect
result of applying commands	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-49	

Theorem	

•  r policy, X system that is output consistent,

transition consistent, locally respects r	

•  X noninterference-secure with respect to policy r	

•  Significance: basis for analyzing systems claiming

to enforce noninterference policy	

–  Establish conditions of theorem for particular set of

commands, states with respect to some policy, set of
protection domains	

–  Noninterference security with respect to r follows	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-50	

Proof	

•  Must show σa ~d σb implies	

T*(cs, σa) ~d T*(πʹ′d(cs), σb)	

•  Induct on length of cs	

•  Basis: cs = ν, so T*(cs, σ) = σ; πʹ′d(ν) = ν;

claim holds	

•  Hypothesis: cs = c1 … cn; then claim holds	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-51	

Induction Step	

•  Consider cscn+1. Assume σa ~d σb and look
at T*(πʹ′d(cscn+1), σb)	

•  2 cases:	

–  dom(cn+1)rd holds	

–  dom(cn+1)rd does not hold	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-52	

dom(cn+1)rd Holds	

T*(πʹ′d(cscn+1), σb) = T*(πʹ′d(cs)cn+1, σb)	

	

 	

= T(cn+1, T*(πʹ′d(cs), σb))	

–  by definition of T* and πʹ′d	

•  T(cn+1, σa) ~d T(cn+1, σb)	

–  as X transition-consistent and σa ~d σb	

•  T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹ′d(cs), σb))	

–  by transition-consistency and IH	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-53	

dom(cn+1)rd Holds	

T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹ′d(cs)cn+1, σb))	

–  by substitution from earlier equality	

T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹ′d(cs)cn+1, σb))	

–  by definition of T*	

•  proving hypothesis	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-54	

dom(cn+1)rd Does Not Hold	

T*(πʹ′d(cscn+1), σb) = T*(πʹ′d(cs), σb)	

–  by definition of πʹ′d	

T*(cs, σb) = T*(πʹ′d(cscn+1), σb)	

–  by above and IH	

T(cn+1, T*(cs, σa)) ~d T*(cs, σa)	

–  as X locally respects r, so σ ~d T(cn+1, σ) for any σ	

T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹ′d(cs)cn+1, σb))	

–  substituting back	

•  proving hypothesis	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-55	

Finishing Proof	

•  Take σa = σb = σ0, so from claim proved by
induction,	

T*(cs, σ0) ~d T*(πʹ′d(cs), σ0)	

•  By previous lemma, as X (and so ~d) output

consistent, then X is noninterference-secure
with respect to policy r	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-56	

Access Control Matrix	

•  Example of interpretation	

•  Given: access control information	

•  Question: are given conditions enough to

provide noninterference security?	

•  Assume: system in a particular state	

– Encapsulates values in ACM	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-57	

ACM Model	

•  Objects L = { l1, …, lm }	

– Locations in memory	

•  Values V = { v1, …, vn }	

– Values that L can assume	

•  Set of states Σ = { σ1, …, σk }	

•  Set of protection domains D = { d1, …, dj }	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-58	

Functions	

•  value: L×Σ→V	

–  returns value v stored in location l when system in state σ	

•  read: D→2V	

–  returns set of objects observable from domain d	

•  write: D→2V	

–  returns set of objects observable from domain d	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-59	

Interpretation of ACM	

•  Functions represent ACM	

–  Subject s in domain d, object o	

–  r ∈ A[s, o] if o ∈ read(d)	

–  w ∈ A[s, o] if o ∈ write(d)	

•  Equivalence relation:	

	

[σa ~dom(c) σb]⇔[∀li ∈ read(d)	

	

[value(li, σa) = value(li, σb)]]	

–  You can read the exactly the same locations in both

states	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-60	

Enforcing Policy r	

•  5 requirements	

–  3 general ones describing dependence of

commands on rights over input and output	

•  Hold for all ACMs and policies	

–  2 that are specific to some security policies	

•  Hold for most policies	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-61	

Enforcing Policy r: First	

•  Output of command c executed in domain
dom(c) depends only on values for which
subjects in dom(c) have read access	

σa ~dom(c) σb ⇒ P(c, σa) = P(c, σb)	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-62	

Enforcing Policy r: Second	

•  If c changes li, then c can only use values of
objects in read(dom(c)) to determine new
value	

	

[σa ~dom(c) σb and	

(value(li, T(c, σa)) ≠ value(li, σa) or	

value(li, T(c, σb)) ≠ value(li, σb))] ⇒	

value(li, T(c, σa)) = value(li, T(c, σb))	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-63	

Enforcing Policy r: Third	

•  If c changes li, then dom(c) provides subject
executing c with write access to li	

	

value(li, T(c, σa)) ≠ value(li, σa) ⇒	

	

 	

 	

 	

	

 	

 	

 	

	

 	

 	

li ∈ write(dom(c))	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-64	

Enforcing Policies r: Fourth	

•  If domain u can interfere with domain v,
then every object that can be read in u can
also be read in v	

•  So if object o cannot be read in u, but can be
read in v; and object oʹ′ in u can be read in v,
then info flows from o to oʹ′, then to v	

Let u, v ∈ D; then urv ⇒ read(u) ⊆ read(v)	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-65	

Enforcing Policies r: Fifth	

•  Subject s can write object o in v, subject sʹ′
can read o in u, then domain v can interfere
with domain u	

li ∈ read(u) and li ∈ write(v) ⇒ vru	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-66	

Theorem	

•  Let X be a system satisfying the five
conditions. The X is noninterference-secure
with respect to r	

•  Proof: must show X output-consistent,
locally respects r, transition-consistent	

– Then by unwinding theorem, theorem holds	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-67	

Output-Consistent	

•  Take equivalence relation to be ~d, first
condition is definition of output-consistent	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-68	

Locally Respects r	

•  Proof by contradiction: assume (dom(c), d) ∉ r but
σa ~d T(c, σa) does not hold	

•  Some object has value changed by c:	

∃ li ∈ read(d) [value(li, σa) ≠ value(li, T(c, σa))]	

•  Condition 3: li ∈ write(d)	

•  Condition 5: dom(c)rd, contradiction	

•  So σa ~d T(c, σa) holds, meaning X locally respects r	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-69	

Transition Consistency	

•  Assume σa ~d σb	

•  Must show	

	

value(li, T(c, σa)) = value(li, T(c, σb))	

 for li ∈ read(d)	

•  3 cases dealing with change that c makes in

li in states σa, σb	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-70	

Case 1	

•  value(li, T(c, σa)) ≠ value(li, σa)	

•  Condition 3: li ∈ write(dom(c))	

•  As li ∈ read(d), condition 5 says dom(c)rd	

•  Condition 4 says read(dom(c)) ⊆ read(d)	

•  As σa ~d σb, σa ~dom(c) σb	

•  Condition 2:	

value(li, T(c, σa)) = value(li, T(c, σb))	

•  So T(c, σa) ~dom(c) T(c, σb), as desired	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-71	

Case 2	

•  value(li, T(c, σb)) ≠ value(li, σb)	

•  Condition 3: li ∈ write(dom(c))	

•  As li ∈ read(d), condition 5 says dom(c)rd	

•  Condition 4 says read(dom(c)) ⊆ read(d)	

•  As σa ~d σb, σa ~dom(c) σb	

•  Condition 2:	

value(li, T(c, σa)) = value(li, T(c, σb))	

•  So T(c, σa) ~dom(c) T(c, σb), as desired	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-72	

Case 3	

•  Neither of the previous two	

–  value(li, T(c, σa)) = value(li, σa)	

–  value(li, T(c, σb)) = value(li, σb)	

•  Interpretation of σa ~d σb is:	

for li ∈ read(d), value(li, σa) = value(li, σb)	

•  So T(c, σa) ~d T(c, σb), as desired	

•  In all 3 cases, X transition-consistent	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-73	

Policies Changing Over Time	

•  Problem: previous analysis assumes static system	

–  In real life, ACM changes as system commands issued	

•  Example: w ∈ C* leads to current state	

–  cando(w, s, z) holds if s can execute z in current state	

–  Condition noninterference on cando	

–  If ¬cando(w, Lara, “write f”), Lara can’t interfere with

any other user by writing file f	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-74	

Generalize Noninterference	

•  G ⊆ S group of subjects, A ⊆ Z set of commands, p

predicate over elements of C*	

•  cs = (c1, …, cn) ∈ C*	

•  πʹ′ʹ′(ν) = ν	

•  πʹ′ʹ′((c1, …, cn)) = (c1ʹ′, …, cnʹ′)	

–  ciʹ′ = ν if p(c1ʹ′, …, ci–1ʹ′) and ci = (s, z) with s ∈ G and z ∈ A	

–  ciʹ′ = ci otherwise	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-75	

Intuition	

•  πʹ′ʹ′(cs) = cs	

•  But if p holds, and element of cs involves

both command in A and subject in G,
replace corresponding element of cs with
empty command ν	

–  Just like deleting entries from cs as πA,G does

earlier	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-76	

Noninterference	

•  G, Gʹ′ ⊆ S groups of subjects, A ⊆ Z set of
commands, p predicate over C*	

•  Users in G executing commands in A are
noninterfering with users in Gʹ′ under
condition p iff, for all cs ∈ C*, all s ∈ Gʹ′,
proj(s, cs, σi) = proj(s, pʹ′ʹ′(cs), σi)	

– Written A,G :| Gʹ′ if p	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-77	

Example	

•  From earlier one, simple security policy
based on noninterference:	

	

∀(s ∈ S) ∀(z ∈ Z)	

	

 	

[{z}, {s} :| S if ¬cando(w, s, z)]	

•  If subject can’t execute command (the
¬cando part), subject can’t use that
command to interfere with another subject	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-78	

Another Example	

•  Consider system in which rights can be
passed	

–  pass(s, z) gives s right to execute z	

– wn = v1, …, vn sequence of vi ∈ C*	

–  prev(wn) = wn–1; last(wn) = vn	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-79	

Policy	

•  No subject s can use z to interfere if, in
previous state, s did not have right to z, and
no subject gave it to s	

{ z }, { s } :| S if	

	

[¬cando(prev(w), s, z) ∧	

	

 	

[cando(prev(w), sʹ′, pass(s, z)) ⇒	

	

 	

 	

¬last(w) = (sʹ′, pass(s, z))]]	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-80	

Effect	

•  Suppose s1 ∈ S can execute pass(s2, z)	

•  For all w ∈ C*, cando(w, s1, pass(s2, z)) true	

•  Initially, cando(ν, s2, z) false	

•  Let zʹ′ ∈ Z be such that (s3, zʹ′) noninterfering

with (s2, z)	

– So for each wn with vn = (s3, zʹ′),	

cando(wn, s2, z) = cando(wn–1, s2, z)	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-81	

Effect	

•  Then policy says for all s ∈ S	

proj(s, ((s2, z), (s1, pass(s2, z)),	

	

 	

 	

 	

 	

(s3, zʹ′), (s2, z)), σi) =	

proj(s, ((s1, pass(s2, z)), (s3, zʹ′), (s2, z)), σi)	

•  So s2’s first execution of z does not affect

any subject’s observation of system	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-82	

Policy Composition I	

•  Assumed: Output function of input	

– Means deterministic (else not function)	

– Means uninterruptability (differences in timings

can cause differences in states, hence in
outputs)	

•  This result for deterministic,
noninterference-secure systems	

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-83	

Compose Systems	

•  Louie, Dewey LOW	

•  Hughie HIGH	

•  bL output buffer	

–  Anyone can read it	

•  bH input buffer	

–  From HIGH source	

•  Hughie reads from:	

–  bLH (Louie writes)	

–  bLDH (Louie, Dewey write)	

–  bDH (Dewey writes)	

bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-84	

Systems Secure	

•  All noninterference-
secure	

–  Hughie has no output	

•  So inputs don’t interfere
with it	

–  Louie, Dewey have no
input	

•  So (nonexistent) inputs
don’t interfere with
outputs	

bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH

February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-85	

