
Lecture 11	


•  Role-Based Access Control	


•  Composition of policies	


•  Noninterference	



– Access control matrix interpretation	
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RBAC	



•  Access depends on function, not identity	


– Example:	



•  Allison, bookkeeper for Math Dept, has access to 
financial records.	



•  She leaves.	


•  Betty hired as the new bookkeeper, so she now has 

access to those records	


– The role of “bookkeeper” dictates access, not 

the identity of the individual.	
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Definitions	


•  Role r: collection of job functions	



–  trans(r): set of authorized transactions for r	


•  Active role of subject s: role s is currently in	



–  actr(s)	


•  Authorized roles of a subject s: set of roles s is 

authorized to assume	


–  authr(s)	



•  canexec(s, t) iff subject s can execute transaction t 
at current time	
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Axioms	


•  Let S be the set of subjects and T the set of 

transactions.	


•  Rule of role assignment:	


      (∀s ∈ S)(∀t ∈ T) [canexec(s, t) → actr(s) ≠ ∅]	



–  If s can execute a transaction, it has a role	


–  This ties transactions to roles	



•  Rule of role authorization: 	

 	

 	


	

(∀s ∈ S) [actr(s) ⊆ authr(s)]	



–  Subject must be authorized to assume an active role 
(otherwise, any subject could assume any role)	
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Axiom	



•  Rule of transaction authorization: 	


	

(∀s ∈ S)(∀t ∈ T) 	

 	

 	

 	

	


	

[canexec(s, t) → t ∈ trans(actr(s))].	



–  If a subject s can execute a transaction, then the 
transaction is an authorized one for the role s 
has assumed	
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Containment of Roles	



•  Trainer can do all transactions that trainee 
can do (and then some). This means role r 
contains role rʹ′ (r > rʹ′). So:	


(∀s ∈ S)[ rʹ′ ∈ authr(s) ∧ r > rʹ′ → r ∈ authr(s) ]	
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Separation of Duty	



•  Let r be a role, and let s be a subject such that       
r ∈ auth(s). Then the predicate meauth(r) (for 
mutually exclusive authorizations) is the set of 
roles that s cannot assume because of the 
separation of duty requirement.	



•  Separation of duty:	


(∀r1, r2 ∈ R) [ r2 ∈ meauth(r1) →	


      [ (∀s ∈ S) [ r1∈ authr(s) → r2 ∉ authr(s) ] ] ]	
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Multiple Policies	



•  Problem	


–  Policy composition	



•  Noninterference	


–  HIGH inputs affect LOW outputs	



•  Nondeducibility	


–  HIGH inputs can be determined from LOW outputs	



•  Restrictiveness	


–  When can policies be composed successfully	
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Composition of Policies	



•  Two organizations have two security 
policies	



•  They merge	


– How do they combine security policies to 

create one security policy?	


– Can they create a coherent, consistent security 

policy?	
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The Problem	



•  Single system with 2 users	


– Each has own virtual machine	


– Holly at system high, Lara at system low so 

they cannot communicate directly	


•  CPU shared between VMs based on load	



– Forms a covert channel through which Holly, 
Lara can communicate	
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Example Protocol	


•  Holly, Lara agree:	



–  Begin at noon	


–  Lara will sample CPU utilization every minute	


–  To send 1 bit, Holly runs program	



•  Raises CPU utilization to over 60%	


–  To send 0 bit, Holly does not run program	



•  CPU utilization will be under 40%	



•  Not “writing” in traditional sense	


–  But information flows from Holly to Lara	
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Policy vs. Mechanism	


•  Can be hard to separate these	


•  In the abstract: CPU forms channel along which 

information can be transmitted	


–  Violates *-property	


–  Not “writing” in traditional sense	



•  Conclusions:	


–  Model does not give sufficient conditions to prevent 

communication, or	


–  System is improperly abstracted; need a better 

definition of “writing”	
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Composition of Bell-LaPadula	


•  Why?	



–  Some standards require secure components to be connected to 
form secure (distributed, networked) system	



•  Question	


–  Under what conditions is this secure?	



•  Assumptions	


–  Implementation of systems precise with respect to each system’s 

security policy	
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Issues	



•  Compose the lattices	


•  What is relationship among labels?	



–  If the same, trivial	


–  If different, new lattice must reflect the 

relationships among the levels	
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Example	



LOW

(HIGH, {EAST}) (HIGH, {WEST})

(HIGH, {EAST, WEST})

LOW

(TS, {EAST}) (TS, {SOUTH})

(TS, {EAST, SOUTH})

(S, {EAST, SOUTH})

(S, {EAST}) (S, {SOUTH})
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Analysis	



•  Assume S < HIGH < TS	


•  Assume SOUTH, EAST, WEST different	


•  Resulting lattice has:	



–  4 clearances (LOW < S < HIGH < TS)	


–  3 categories (SOUTH, EAST, WEST)	
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Same Policies	



•  If we can change policies that components 
must meet, composition is trivial (as above)	



•  If we cannot, we must show composition 
meets the same policy as that of 
components; this can be very hard	
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Different Policies	



•  What does “secure” now mean?	


•  Which policy (components) dominates?	


•  Possible principles:	



– Any access allowed by policy of a component 
must be allowed by composition of components 
(autonomy)	



– Any access forbidden by policy of a component 
must be forbidden by composition of 
components (security)	
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Implications	



•  Composite system satisfies security policy 
of components as components’ policies take 
precedence	



•  If something neither allowed nor forbidden 
by principles, then:	


– Allow it (Gong & Qian)	


– Disallow it (Fail-Safe Defaults)	



February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-19	





Example	



•  System X: Bob can’t access Alice’s files	


•  System Y: Eve, Lilith can access each 

other’s files	


•  Composition policy:	



– Bob can access Eve’s files	


– Lilith can access Alice’s files	



•  Question: can Bob access Lilith’s files?	



February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-20	





Solution (Gong & Qian)	



•  Notation:	


–  (a, b): a can read b’s files	


– AS(x): access set of system x	



•  Set-up:	


– AS(X) = ∅	


– AS(Y) = { (Eve, Lilith), (Lilith, Eve) }	


– AS(X∪Y) = { (Bob, Eve), (Lilith, Alice),	


	

 	

 	

 	

  (Eve, Lilith), (Lilith, Eve) }	
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Solution (Gong & Qian)	


•  Compute transitive closure of AS(X∪Y):	



–  AS(X∪Y)+ = { (Bob, Eve), (Bob, Lilith), (Bob, Alice),	


	

 	

 	

 	

(Eve, Lilith), (Eve, Alice),	


	

 	

 	

 	

 	

(Lilith, Eve), (Lilith, Alice) }	



•  Delete accesses conflicting with policies of 
components:	


–  Delete (Bob, Alice)	



•  (Bob, Lilith) in set, so Bob can access Lilith’s files	
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Idea	


•  Composition of policies allows accesses not mentioned by 

original policies	


•  Generate all possible allowed accesses	



–  Computation of transitive closure	


•  Eliminate forbidden accesses	



–  Removal of accesses disallowed by individual access policies	


•  Everything else is allowed	


•  Note: determining if access allowed is of polynomial 

complexity	
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Interference	



•  Think of it as something used in 
communication	


– Holly/Lara example: Holly interferes with the 

CPU utilization, and Lara detects it—
communication	



•  Plays role of writing (interfering) and 
reading (detecting the interference)	
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Model	


•  System as state machine	



–  Subjects S = { si }	


–  States Σ = { σi }	


–  Outputs O = { oi }	


–  Commands Z = { zi }	


–  State transition commands C = S × Z	



•  Note: no inputs	


–  Encode either as selection of commands or in state transition 

commands	
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Functions	



•  State transition function T: C×Σ→Σ	


– Describes effect of executing command c in 

state σ	


•  Output function P: C×Σ→O	



– Output of machine when executing command c 
in state σ	



•  Initial state is σ0	
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Example	



•  Users Heidi (high), Lucy (low) 	


•  2 bits of state, H (high) and L (low)	



– System state is (H, L) where H, L are 0, 1	


•  2 commands: xor0, xor1 do xor with 0, 1	



– Operations affect both state bits regardless of 
whether Heidi or Lucy issues it	
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Example: 2-bit Machine	



•  S = { Heidi, Lucy }	


•  Σ = { (0,0), (0,1), (1,0), (1,1) }	


•  C = { xor0, xor1 }	



Input States (H, L)	


(0,0)	

 (0,1)	

 (1,0)	

 (1,1)	



xor0	

 (0,0)	

 (0,1)	

 (1,0)	

 (1,1)	


xor1	

 (1,1)	

 (1,0)	

 (0,1)	

 (0,0)	
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Outputs and States	



•  T is inductive in first argument, as	


T(c0, σ0) = σ1; T(ci+1, σi+1) = T(ci+1,T(ci,σi))	



•  Let C* be set of possible sequences of 
commands in C	



•  T*: C*×Σ→Σ and	


cs = c0…cn ⇒ T*(cs,σi) = T(cn,…,T(c0,σi)…)	



•  P similar; define P* similarly	
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Projection	



•  T*(cs,σi) sequence of state transitions	


•  P*(cs,σi) corresponding outputs	


•  proj(s, cs, σi) set of outputs in P*(cs,σi) that 

subject s authorized to see	


–  In same order as they occur in P*(cs,σi)	


– Projection of outputs for s	



•  Intuition: list of outputs after removing 
outputs that s cannot see	
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Purge	



•  G ⊆ S, G a group of subjects	


•  A ⊆ Z, A a set of commands	


•  πG(cs) subsequence of cs with all elements 

(s,z), s ∈ G deleted	


•  πA(cs) subsequence of cs with all elements 

(s,z), z ∈ A deleted	


•  πG,A(cs) subsequence of cs with all elements 

(s,z), s ∈ G and z ∈ A deleted	
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Example: 2-bit Machine	


•  Let σ0 = (0,1)	


•  3 commands applied:	



–  Heidi applies xor0	


–  Lucy applies xor1	


–  Heidi applies xor1	



•  cs = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor0))	


•  Output is 011001	



–  Shorthand for sequence (0,1)(1,0)(0,1)	
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Example	



•  proj(Heidi, cs, σ0) = 011001	


•  proj(Lucy, cs, σ0) = 101	


•  πLucy(cs) = ((Heidi, xor0), (Heidi, xor1))	


•  πLucy,xor1(cs) = ((Heidi, xor0), (Heidi, xor1))	


•  πHeidi (cs) = ((Lucy, xor1))	
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Example	



•  πLucy,xor0(cs) = ((Heidi, xor0), (Lucy, xor1),
	

 	

 	

 	

 	

      (Heidi, xor1))	



•  πHeidi,xor0(cs) = πxor0(cs) = ((Lucy, xor1),
	

 	

 	

 	

  	

      (Heidi, xor1))	



•  πHeidi, xor1(cs) = ((Heidi, xor0), (Lucy, xor1))	


•  πxor1(cs) = ((Heidi, xor0))	
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Noninterference	


•  Intuition: Set of outputs Lucy can see corresponds 

to set of inputs she can see, there is no interference	


•  Formally: G, Gʹ′ ⊆ S, G ≠ Gʹ′; A ⊆ Z; Users in G 

executing commands in A are noninterfering with 
users in Gʹ′ iff for all cs ∈ C*, and for all s ∈ Gʹ′,	



proj(s, cs, σi) = proj(s, πG,A(cs), σi)	


–  Written A,G :| Gʹ′	
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Example	


•  Let cs = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor1)) 

and σ0 = (0, 1)	


•  Take G = { Heidi }, Gʹ′ = { Lucy }, A = ∅	


•  πHeidi(cs) = ((Lucy, xor1))	



–  So proj(Lucy, πHeidi(cs), σ0) = 0	


•  proj(Lucy, cs, σ0) = 101	


•  So { Heidi } :| { Lucy } is false	



–  Makes sense; commands issued to change H bit also 
affect L bit	
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Example	


•  Same as before, but Heidi’s commands affect H 

bit only, Lucy’s the L bit only	


•  Output is 0H0L1H	


•  πHeidi(cs) = ((Lucy,xor1))	



–  So proj(Lucy, πHeidi(cs), σ0) = 0	


•  proj(Lucy, cs, σ0) = 0	


•  So { Heidi } :| { Lucy } is true	



–  Makes sense; commands issued to change H bit now do 
not affect L bit	
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Security Policy	



•  Partitions systems into authorized, 
unauthorized states	



•  Authorized states have no forbidden 
interferences	



•  Hence a security policy is a set of 
noninterference assertions	


– See previous definition	
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Alternative Development	



•  System X is a set of protection domains	


	

 	

D = { d1, …, dn }	



•  When command c executed, it is executed 
in protection domain dom(c)	



•  Give alternate versions of definitions shown 
previously	
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Output-Consistency	


•  c ∈ C, dom(c) ∈ D	


•  ~dom(c) equivalence relation on states of system X	


•  ~dom(c) output-consistent if	


	

σa ~dom(c) σb ⇒ P(c, σa) = P(c, σb)	



•  Intuition: states are output-consistent if for subjects in dom
(c), projections of outputs for both states after c are the 
same	
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Security Policy	



•  D = { d1, …, dn }, di a protection domain	


•  r: D×D a reflexive relation	


•  Then r defines a security policy	


•  Intuition: defines how information can flow 

around a system	


–  dirdj means info can flow from di to dj	


–  dirdi as info can flow within a domain	
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Projection Function	


•  πʹ′ analogue of π, earlier	


•  Commands, subjects absorbed into protection 

domains	


•  d ∈ D, c ∈ C, cs ∈ C*	


•  πʹ′d(ν) = ν	


•  πʹ′d(csc) = πʹ′d(cs)c 	

if dom(c)rd	


•  πʹ′d(csc) = πʹ′d(cs)	

otherwise	


•  Intuition: if executing c interferes with d, then c is 

visible; otherwise, as if c never executed	
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Noninterference-Secure	


•  System has set of protection domains D	


•  System is noninterference-secure with respect to policy r if	



P*(c, T*(cs, σ0)) = P*(c, T*(πʹ′d(cs), σ0))	


•  Intuition: if executing cs causes the same transitions for 

subjects in domain d as does its projection with respect to 
domain d, then no information flows in violation of the 
policy	
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Lemma	



•  Let T*(cs, σ0) ~d T*(πʹ′d(cs), σ0) for c ∈ C	


•  If ~d output-consistent, then system is 

noninterference-secure with respect to 
policy r	
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Proof	



•  d = dom(c) for c ∈ C	


•  By definition of output-consistent,	



T*(cs, σ0) ~d T*(πʹ′d(cs), σ0)	


	

implies	



P*(c,T*(cs, σ0)) = P*(c,T*(πʹ′d(cs), σ0))	


•  This is definition of noninterference-secure 

with respect to policy r	
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Unwinding Theorem	



•  Links security of sequences of state 
transition commands to security of 
individual state transition commands	



•  Allows you to show a system design is ML 
secure by showing it matches specs from 
which certain lemmata derived	


– Says nothing about security of system, because 

of implementation, operation, etc. issues	
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Locally Respects	



•  r is a policy	


•  System X locally respects r if dom(c) being 

noninterfering with d ∈ D implies σa ~d T(c, 
σa)	



•  Intuition: applying c under policy r to 
system X  has no effect on domain d when X 
locally respects r	
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Transition-Consistent	



•  r policy, d ∈ D	


•  If σa ~d σb implies T(c, σa) ~d T(c, σb), 

system X transition-consistent under r	


•  Intuition: command c does not affect 

equivalence of states under policy r	
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Lemma	



•  c1, c2 ∈ C, d ∈ D	


•  For policy r, dom(c1)rd and dom(c2)rd	


•  Then	



T*(c1c2,σ) = T(c1,T(c2,σ)) = T(c2,T(c1,σ))	


•  Intuition: if info can flow from domains of 

commands into d, then order doesn’t affect 
result of applying commands	
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Theorem	


•  r policy, X system that is output consistent, 

transition consistent, locally respects r	


•  X noninterference-secure with respect to policy r	


•  Significance: basis for analyzing systems claiming 

to enforce noninterference policy	


–  Establish conditions of theorem for particular set of 

commands, states with respect to some policy, set of 
protection domains	



–  Noninterference security with respect to r follows	
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Proof	



•  Must show σa ~d σb implies	


T*(cs, σa) ~d T*(πʹ′d(cs), σb)	



•  Induct on length of cs	


•  Basis: cs = ν, so T*(cs, σ) = σ; πʹ′d(ν) = ν; 

claim holds	


•  Hypothesis: cs = c1 … cn; then claim holds	
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Induction Step	



•  Consider cscn+1. Assume σa ~d σb and look 
at T*(πʹ′d(cscn+1), σb)	



•  2 cases:	


–  dom(cn+1)rd holds	


–  dom(cn+1)rd does not hold	
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dom(cn+1)rd Holds	



T*(πʹ′d(cscn+1), σb) = T*(πʹ′d(cs )cn+1, σb)	


	

 	

= T(cn+1, T*(πʹ′d(cs ), σb))	



–  by definition of T* and πʹ′d	


•  T(cn+1, σa) ~d T(cn+1, σb)	



–  as X transition-consistent and σa ~d σb	


•  T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹ′d(cs ), σb))	



–  by transition-consistency and IH	
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dom(cn+1)rd Holds	



T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹ′d(cs )cn+1, σb))	


–  by substitution from earlier equality	



T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹ′d(cs )cn+1, σb))	


–  by definition of T*	



•  proving hypothesis	
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dom(cn+1)rd Does Not Hold	


T*(πʹ′d(cscn+1), σb) = T*(πʹ′d(cs ), σb)	



–  by definition of πʹ′d	


T*(cs, σb) = T*(πʹ′d(cscn+1), σb)	



–  by above and IH	


T(cn+1, T*(cs, σa)) ~d T*(cs, σa)	



–  as X locally respects r, so σ ~d T(cn+1, σ) for any σ	


T(cn+1,T*(cs,σa))~dT(cn+1,T*(πʹ′d(cs )cn+1, σb))	



–  substituting back	


•  proving hypothesis	
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Finishing Proof	



•  Take σa = σb = σ0, so from claim proved by 
induction,	



T*(cs, σ0) ~d T*(πʹ′d(cs), σ0)	


•  By previous lemma, as X (and so ~d) output 

consistent, then X is noninterference-secure 
with respect to policy r	
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Access Control Matrix	



•  Example of interpretation	


•  Given: access control information	


•  Question: are given conditions enough to 

provide noninterference security?	


•  Assume: system in a particular state	



– Encapsulates values in ACM	
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ACM Model	



•  Objects L = { l1, …, lm }	


– Locations in memory	



•  Values V = { v1, …, vn }	


– Values that L can assume	



•  Set of states Σ = { σ1, …, σk }	


•  Set of protection domains D = { d1, …, dj }	



February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-58	





Functions	


•  value: L×Σ→V	



–  returns value v stored in location l when system in state σ	



•  read: D→2V	


–  returns set of objects observable from domain d	



•  write: D→2V	


–  returns set of objects observable from domain d	
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Interpretation of ACM	


•  Functions represent ACM	



–  Subject s in domain d, object o	


–  r ∈ A[s, o] if o ∈ read(d)	


–  w ∈ A[s, o] if o ∈ write(d)	



•  Equivalence relation:	


	

[σa ~dom(c) σb]⇔[ ∀li ∈ read(d)	



	

[ value(li, σa) = value(li, σb) ] ]	


–  You can read the exactly the same locations in both 

states	
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Enforcing Policy r	



•  5 requirements	


–  3 general ones describing dependence of 

commands on rights over input and output	


•  Hold for all ACMs and policies	



–  2 that are specific to some security policies	


•  Hold for most policies	
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Enforcing Policy r: First	



•  Output of command c executed in domain 
dom(c) depends only on values for which 
subjects in dom(c) have read access	



σa ~dom(c) σb ⇒ P(c, σa) = P(c, σb)	
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Enforcing Policy r: Second	



•  If c changes li, then c can only use values of 
objects in read(dom(c)) to determine new 
value	


	

[ σa ~dom(c) σb and	



(value(li, T(c, σa)) ≠ value(li, σa) or	


value(li, T(c, σb)) ≠ value(li, σb)) ] ⇒	


value(li, T(c, σa)) = value(li, T(c, σb))	
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Enforcing Policy r: Third	



•  If c changes li, then dom(c) provides subject 
executing c with write access to li	


	

value(li, T(c, σa)) ≠ value(li, σa) ⇒	


	

 	

 	

 	

	

 	

 	

 	

	

 	

 	

li ∈ write(dom(c))	
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Enforcing Policies r: Fourth	



•  If domain u can interfere with domain v, 
then every object that can be read in u can 
also be read in v	



•  So if object o cannot be read in u, but can be 
read in v; and object oʹ′ in u can be read in v, 
then info flows from o to oʹ′, then to v	


Let u, v ∈ D; then urv ⇒ read(u) ⊆ read(v)	
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Enforcing Policies r: Fifth	



•  Subject s can write object o in v, subject sʹ′ 
can read o in u, then domain v can interfere 
with domain u	



li ∈ read(u) and li ∈ write(v) ⇒ vru	
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Theorem	



•  Let X be a system satisfying the five 
conditions. The X is noninterference-secure 
with respect to r	



•  Proof: must show X output-consistent, 
locally respects r, transition-consistent	


– Then by unwinding theorem, theorem holds	
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Output-Consistent	



•  Take equivalence relation to be ~d, first 
condition is definition of output-consistent	
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Locally Respects r	


•  Proof by contradiction: assume (dom(c), d) ∉ r but             
σa ~d T(c, σa) does not hold	



•  Some object has value changed by c:	


∃ li ∈ read(d) [ value(li, σa) ≠ value(li, T(c, σa)) ]	



•  Condition 3: li ∈ write(d)	


•  Condition 5: dom(c)rd, contradiction	


•  So σa ~d T(c, σa) holds, meaning X locally respects r	



February 8, 2011	

 ECS 235B, Winter Quarter 2011	

 Slide #11-69	





Transition Consistency	



•  Assume σa ~d σb	


•  Must show	



	

value(li, T(c, σa)) = value(li, T(c, σb))	


    for li ∈ read(d)	


•  3 cases dealing with change that c makes in 

li in states σa, σb	
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Case 1	


•  value(li, T(c, σa)) ≠ value(li, σa)	


•  Condition 3: li ∈ write(dom(c))	


•  As li ∈ read(d), condition 5 says dom(c)rd	


•  Condition 4 says read(dom(c)) ⊆ read(d)	


•  As σa ~d σb, σa ~dom(c) σb	


•  Condition 2:	



value(li, T(c, σa)) = value(li, T(c, σb))	


•  So T(c, σa) ~dom(c) T(c, σb), as desired	
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Case 2	


•  value(li, T(c, σb)) ≠ value(li, σb)	


•  Condition 3: li ∈ write(dom(c))	


•  As li ∈ read(d), condition 5 says dom(c)rd	


•  Condition 4 says read(dom(c)) ⊆ read(d)	


•  As σa ~d σb, σa ~dom(c) σb	


•  Condition 2:	



value(li, T(c, σa)) = value(li, T(c, σb))	


•  So T(c, σa) ~dom(c) T(c, σb), as desired	
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Case 3	



•  Neither of the previous two	


–  value(li, T(c, σa)) = value(li, σa)	


–  value(li, T(c, σb)) = value(li, σb)	



•  Interpretation of σa ~d σb is:	


for li ∈ read(d), value(li, σa) = value(li, σb)	



•  So T(c, σa) ~d T(c, σb), as desired	


•  In all 3 cases, X transition-consistent	
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Policies Changing Over Time	


•  Problem: previous analysis assumes static system	



–  In real life, ACM changes as system commands issued	


•  Example: w ∈ C* leads to current state	



–  cando(w, s, z) holds if s can execute z in current state	


–  Condition noninterference on cando	


–  If ¬cando(w, Lara, “write f”), Lara can’t interfere with 

any other user by writing file f	
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Generalize Noninterference	


•  G ⊆ S group of subjects, A ⊆ Z set of commands, p 

predicate over elements of C*	


•  cs = (c1, …, cn) ∈ C*	


•  πʹ′ʹ′(ν) = ν	


•  πʹ′ʹ′((c1, …, cn)) = (c1ʹ′, …, cnʹ′)	



–  ciʹ′ = ν if p(c1ʹ′, …, ci–1ʹ′) and ci = (s, z) with s ∈ G and z ∈ A	


–  ciʹ′ = ci otherwise	
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Intuition	



•  πʹ′ʹ′(cs) = cs	


•  But if p holds, and element of cs involves 

both command in A and subject in G, 
replace corresponding element of cs with 
empty command ν	


–  Just like deleting entries from cs as πA,G does 

earlier	
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Noninterference	



•  G, Gʹ′ ⊆ S groups of subjects, A ⊆ Z set of 
commands, p predicate over C*	



•  Users in G executing commands in A are 
noninterfering with users in Gʹ′ under 
condition p iff, for all cs ∈ C*, all s ∈ Gʹ′, 
proj(s, cs, σi) = proj(s, pʹ′ʹ′(cs), σi)	


– Written A,G :| Gʹ′ if p	
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Example	



•  From earlier one, simple security policy 
based on noninterference:	


	

∀(s ∈ S) ∀(z ∈ Z)	


	

 	

[ {z}, {s} :| S if ¬cando(w, s, z) ]	



•  If subject can’t execute command (the 
¬cando part), subject can’t use that 
command to interfere with another subject	
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Another Example	



•  Consider system in which rights can be 
passed	


–  pass(s, z) gives s right to execute z	


– wn = v1, …, vn sequence of vi ∈ C*	


–  prev(wn) = wn–1; last(wn) = vn	
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Policy	



•  No subject s can use z to interfere if, in 
previous state, s did not have right to z, and 
no subject gave it to s	



{ z }, { s } :| S if	


	

[ ¬cando(prev(w), s, z) ∧	


	

 	

[ cando(prev(w), sʹ′, pass(s, z)) ⇒	


	

 	

 	

¬last(w) = (sʹ′, pass(s, z)) ] ]	
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Effect	



•  Suppose s1 ∈ S can execute pass(s2, z)	


•  For all w ∈ C*, cando(w, s1, pass(s2, z)) true	


•  Initially, cando(ν, s2, z) false	


•  Let zʹ′ ∈ Z be such that (s3, zʹ′) noninterfering 

with (s2, z)	


– So for each wn with vn = (s3, zʹ′),	



cando(wn, s2, z) = cando(wn–1, s2, z)	
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Effect	



•  Then policy says for all s ∈ S	


proj(s, ((s2, z), (s1, pass(s2, z)),	


	

 	

 	

 	

 	

(s3, zʹ′), (s2, z)), σi) =	



proj(s, ((s1, pass(s2, z)), (s3, zʹ′), (s2, z)), σi)	


•  So s2’s first execution of z does not affect 

any subject’s observation of system	
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Policy Composition I	



•  Assumed: Output function of input	


– Means deterministic (else not function)	


– Means uninterruptability (differences in timings 

can cause differences in states, hence in 
outputs)	



•  This result for deterministic, 
noninterference-secure systems	
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Compose Systems	


•  Louie, Dewey LOW	


•  Hughie HIGH	


•  bL output buffer	



–  Anyone can read it	


•  bH input buffer	



–  From HIGH source	


•  Hughie reads from:	



–  bLH (Louie writes)	


–  bLDH (Louie, Dewey write)	


–  bDH (Dewey writes)	



bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH
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Systems Secure	



•  All noninterference-
secure	


–  Hughie has no output	



•  So inputs don’t interfere 
with it	



–  Louie, Dewey have no 
input	



•  So (nonexistent) inputs 
don’t interfere with 
outputs	



bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH
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