Lecture 13

• Entropy and information flow
• Information flow policies
 – Non-transitive
 – Transitive non-lattice
• Compiler-based mechanisms
• Execution-based mechanisms
Entropy and Information Flow

• Idea: info flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c

• Formally:
 – s time before execution of c, t time after
 – $H(x_s \mid y_t) < H(x_s \mid y_s)$
 – If no y at time s, then $H(x_s \mid y_t) < H(x_s)$
Example 1

• Command is $x := y + z$; where:
 – $0 \leq y \leq 7$, equal probability
 – $z = 1$ with prob. $1/2$, $z = 2$ or 3 with prob. $1/4$ each

• s state before command executed; t, after; so
 – $H(y_s) = H(y_t) = -8(1/8) \log (1/8) = 3$
 – $H(z_s) = H(z_t) = -(1/2) \log (1/2) - 2(1/4) \log (1/4) = 1.5$

• If you know x_t, y_s can have at most 3 values, so $H(y_s \mid x_t) = -3(1/3) \log (1/3) = \log 3$
Example 2

- Command is
 - if \(x = 1 \) then \(y := 0 \) else \(y := 1 \);

where:
 - \(x, y \) equally likely to be either 0 or 1

- \(H(x_s) = 1 \) as \(x \) can be either 0 or 1 with equal probability

- \(H(x_s \mid y_t) = 0 \) as if \(y_t = 1 \) then \(x_s = 0 \) and vice versa
 - Thus, \(H(x_s \mid y_t) = 0 < 1 = H(x_s) \)

- So information flowed from \(x \) to \(y \)
Implicit Flow of Information

• Information flows from x to y without an explicit assignment of the form $y := f(x)$
 – $f(x)$ an arithmetic expression with variable x
• Example from previous slide:
 – if $x = 1$ then $y := 0$
 else $y := 1$;
• So must look for implicit flows of information to analyze program
Notation

• \(x \) means class of \(x \)
 – In Bell-LaPadula based system, same as “label of security compartment to which \(x \) belongs”

• \(x \leq y \) means “information can flow from an element in class of \(x \) to an element in class of \(y \)”
 – Or, “information with a label placing it in class \(x \) can flow into class \(y \)”
Information Flow Policies

Information flow policies are usually:

• reflexive
 – So information can flow freely among members of a single class

• transitive
 – So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3
Non-Transitive Policies

• Betty is a confident of Anne
• Cathy is a confident of Betty
 – With transitivity, information flows from Anne to Betty to Cathy
• Anne confides to Betty she is having an affair with Cathy’s spouse
 – Transitivity undesirable in this case, probably
Transitive Non-Lattice Policies

- 2 faculty members co-PIs on a grant
 - Equal authority; neither can overrule the other
- Grad students report to faculty members
- Undergrads report to grad students
- Information flow relation is:
 - Reflexive and transitive
- But some elements (people) have no “least upper bound” element
 - What is it for the faculty members?
Confidentiality Policy Model

- Lattice model fails in previous 2 cases
- Generalize: policy $I = (SC_I, \leq_I, \text{join}_I)$:
 - SC_I set of security classes
 - \leq_I ordering relation on elements of SC_I
 - join_I function to combine two elements of SC_I
- Example: Bell-LaPadula Model
 - SC_I set of security compartments
 - \leq_I ordering relation dom
 - join_I function lub
Confinement Flow Model

- \((I, O, \text{confine}, \rightarrow)\)
 - \(I = (\text{SC}_I, \leq_I, \text{join}_I)\)
 - \(O\) set of entities
 - \(\rightarrow: O \times O\) with \((a, b) \in \rightarrow\) (written \(a \rightarrow b\)) iff information can flow from \(a\) to \(b\)
 - for \(a \in O\), \(\text{confine}(a) = (a_L, a_U) \in \text{SC}_I \times \text{SC}_I\) with \(a_L \leq_I a_U\)

 - Interpretation: for \(a \in O\), if \(x \leq_I a_U\), info can flow from \(x\) to \(a\), and if \(a_L \leq_I x\), info can flow from \(a\) to \(x\)
 - So \(a_L\) lowest classification of info allowed to flow out of \(a\), and \(a_U\) highest classification of info allowed to flow into \(a\)
Assumptions, etc.

- Assumes: object can change security classes
 - So, variable can take on security class of its data
- Object x has security class x currently
- Note transitivity *not* required
- If information can flow from a to b, then b dominates a under ordering of policy I:
 $$(\forall a, b \in O)[a \rightarrow b \Rightarrow a_L \leq_I b_U]$$
Example 1

- \(SC_I = \{ U, C, S, TS \} \), with \(U \leq_I C \), \(C \leq_I S \), and \(S \leq_I TS \)
- \(a, b, c \in O \)
 - \(\text{confine}(a) = [C, C] \)
 - \(\text{confine}(b) = [S, S] \)
 - \(\text{confine}(c) = [TS, TS] \)
- Secure information flows: \(a \rightarrow b, a \rightarrow c, b \rightarrow c \)
 - As \(a_L \leq_I b_U, a_L \leq_I c_U, b_L \leq_I c_U \)
 - Transitivity holds
Example 2

- SC_I, \leq_I as in Example 1

- $x, y, z \in O$
 - $\text{confine}(x) = [C, C]$
 - $\text{confine}(y) = [S, S]$
 - $\text{confine}(z) = [C, TS]$

- Secure information flows: $x \rightarrow y, x \rightarrow z, y \rightarrow z, z \rightarrow x, z \rightarrow y$
 - As $x_L \leq_I y_U, x_L \leq_I z_U, y_L \leq_I z_U, z_L \leq_I x_U, z_L \leq_I y_U$
 - Transitivity does not hold
 - $y \rightarrow z$ and $z \rightarrow x$, but $y \rightarrow x$ is false, because $y_L \leq_I x_U$ is false
Transitive Non-Lattice Policies

• $Q = (S_Q, \leq_Q)$ is a quasi-ordered set when \leq_Q is transitive and reflexive over S_Q

• How to handle information flow?
 – Define a partially ordered set containing quasi-ordered set
 – Add least upper bound, greatest lower bound to partially ordered set
 – It’s a lattice, so apply lattice rules!
In Detail …

• \(\forall x \in S_Q: \text{let } f(x) = \{ y \mid y \in S_Q \land y \leq_Q x \} \)
 - Define \(S_{QP} = \{ f(x) \mid x \in S_Q \} \)
 - Define \(\leq_{QP} = \{ (x, y) \mid x, y \in S_Q \land x \subseteq y \} \)
 1. \(S_{QP} \) partially ordered set under \(\leq_{QP} \)
 2. \(f \) preserves order, so \(y \leq_Q x \iff f(x) \leq_{QP} f(y) \)

• Add upper, lower bounds
 - \(S_{QP}' = S_{QP} \cup \{ S_Q, \emptyset \} \)
 - Upper bound \(ub(x, y) = \{ z \mid z \in S_{QP} \land x \subseteq z \land y \subseteq z \} \)
 - Least upper bound \(lub(x, y) = \cap ub(x, y) \)
 1. Lower bound, greatest lower bound defined analogously
And the Policy Is …

• Now \((S_{QP}', \leq_{QP})\) is lattice
• Information flow policy on quasi-ordered set emulates that of this lattice!
Non-transitive Flow Policies

• Government agency information flow policy (on next slide)

• Entities public relations officers PRO, analysts A, spymasters S
 – \(\text{confine}(\text{PRO}) = \{ \text{public, analysis} \} \)
 – \(\text{confine}(A) = \{ \text{analysis, top-level} \} \)
 – \(\text{confine}(S) = \{ \text{covert, top-level} \} \)
Information Flow

- By confinement flow model:
 - PRO ≤ A, A ≤ PRO
 - PRO ≤ S
 - A ≤ S, S ≤ A

- Data cannot flow to public relations officers; not transitive
 - S ≤ A, A ≤ PRO
 - S ≤ PRO is false
Transforming Into Lattice

- Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
 - Done so this set is partially ordered
 - Means it can be transformed into a lattice

- Can show this mapping preserves ordering relation
 - So it preserves non-orderings and non-transitivity of elements corresponding to those of original set
Dual Mapping

- \(R = (SC_R, \leq_R, join_R) \) reflexive info flow policy
- \(P = (S_P, \leq_P) \) ordered set
 - Define dual mapping functions \(l_R, h_R: SC_R \rightarrow S_P \)
 - \(l_R(x) = \{ x \} \)
 - \(h_R(x) = \{ y \mid y \in SC_R \land y \leq_R x \} \)
 - \(S_P \) contains subsets of \(SC_R \); \(\leq_P \) subset relation
 - Dual mapping function order preserving iff
 \[
 (\forall a, b \in SC_R)[a \leq_R b \iff l_R(a) \leq_P h_R(b)]
 \]
Theorem

Dual mapping from reflexive info flow policy R to ordered set P order-preserving

Proof sketch: all notation as before

(\Rightarrow) Let $a \leq_R b$. Then $a \in l_R(a), a \in h_R(b)$, so $l_R(a) \subseteq h_R(b)$, or $l_R(a) \leq_P h_R(b)$

(\Leftarrow) Let $l_R(a) \leq_P h_R(b)$. Then $l_R(a) \subseteq h_R(b)$. But $l_R(a) = \{a\}$, so $a \in h_R(b)$, giving $a \leq_R b$
Info Flow Requirements

- Interpretation: let $\text{confine}(x) = \{ x_L, x_U \}$, consider class γ
 - Information can flow from x to element of γ iff $x_L \leq_R \gamma$, or $l_R(x_L) \subseteq h_R(\gamma)$
 - Information can flow from element of γ to x iff $\gamma \leq_R x_U$, or $l_R(\gamma) \subseteq h_R(x_U)$
Revisit Government Example

- Information flow policy is R
- Flow relationships among classes are:

 $\text{public} \leq_R \text{public}$

 $\text{public} \leq_R \text{analysis}$
 $\text{analysis} \leq_R \text{analysis}$

 $\text{public} \leq_R \text{covert}$
 $\text{covert} \leq_R \text{covert}$

 $\text{public} \leq_R \text{top-level}$
 $\text{covert} \leq_R \text{top-level}$

 $\text{analysis} \leq_R \text{top-level}$
 $\text{top-level} \leq_R \text{top-level}$
Dual Mapping of R

- Elements l_R, h_R:

 $l_R(\text{public}) = \{ \text{public} \}$

 $h_R(\text{public}) = \{ \text{public} \}$

 $l_R(\text{analysis}) = \{ \text{analysis} \}$

 $h_R(\text{analysis}) = \{ \text{public, analysis} \}$

 $l_R(\text{covert}) = \{ \text{covert} \}$

 $h_R(\text{covert}) = \{ \text{public, covert} \}$

 $l_R(\text{top-level}) = \{ \text{top-level} \}$

 $h_R(\text{top-level}) = \{ \text{public, analysis, covert, top-level} \}$
confine

- Let \(p \) be entity of type PRO, \(a \) of type A, \(s \) of type S
- In terms of \(P \) (not \(R \)), we get:
 - \(\text{confine}(p) = [\{\text{public}\}, \{\text{public, analysis}\}] \)
 - \(\text{confine}(a) = [\{\text{analysis}\}, \{\text{public, analysis, covert, top-level}\}] \)
 - \(\text{confine}(s) = [\{\text{covert}\}, \{\text{public, analysis, covert, top-level}\}] \)
And the Flow Relations Are …

• $p \rightarrow a$ as $l_R(p) \subseteq h_R(a)$
 - $l_R(p) = \{ \text{public} \}$
 - $h_R(a) = \{ \text{public, analysis, covert, top-level} \}$

• Similarly: $a \rightarrow p, p \rightarrow s, a \rightarrow s, s \rightarrow a$

• **But** $s \rightarrow p$ is false as $l_R(s) \not\subset h_R(p)$
 - $l_R(s) = \{ \text{covert} \}$
 - $h_R(p) = \{ \text{public, analysis} \}$
Analysis

- (S_P, \leq_P) is a lattice, so it can be analyzed like a lattice policy
- Dual mapping preserves ordering, hence non-ordering and non-transitivity, of original policy
 - So results of analysis of (S_P, \leq_P) can be mapped back into $(SC_R, \leq_R, join_R)$
Compiler-Based Mechanisms

- Detect unauthorized information flows in a program during compilation
- Analysis not precise, but secure
 - If a flow *could* violate policy (but may not), it is unauthorized
 - No unauthorized path along which information could flow remains undetected
- Set of statements *certified* with respect to information flow policy if flows in set of statements do not violate that policy
Example

```plaintext
if x = 1 then y := a;
else y := b;
```

- Info flows from x and a to y, or from x and b to y
- Certified only if $x \leq y$ and $a \leq y$ and $b \leq y$
 - Note flows for both branches must be true unless compiler can determine that one branch will never be taken

February 17, 2011

ECS 235B, Winter Quarter 2011

Slide #13-30
Declarations

• Notation:

\[x: \text{int class } \{ A, B \} \]

means \(x \) is an integer variable with security class at least \(\text{lub}\{ A, B \} \), so \(\text{lub}\{ A, B \} \leq x \)

• Distinguished classes \(\text{Low, High} \)
 – Constants are always \(\text{Low} \)
Input Parameters

- Parameters through which data passed into procedure
- Class of parameter is class of actual argument

\[i_p: \text{type class} \{ i_p \} \]
Output Parameters

- Parameters through which data passed out of procedure
 - If data passed in, called “input/output parameter”
- As information can flow from input parameters to output parameters, class must include this:
 \[o_p: \text{type class} \{ r_1, \ldots, r_n \} \]
 where \(r_i \) is class of \(i \)th input or input/output argument
Example

```java
proc sum(x: int class { A });
    var out: int class { A, B });
begin
    out := out + x;
end;
• Require $x \leq \text{out}$ and $\text{out} \leq \text{out}$
```
Array Elements

• Information flowing out:

 \[\ldots := a[i] \]

 Value of \(i\), \(a[i]\) both affect result, so class is \(\text{lub}\{ a[i], i \} \)

• Information flowing in:

 \[a[i] := \ldots \]

• Only value of \(a[i]\) affected, so class is \(a[i]\)
Assignment Statements

\[x := y + z; \]

- Information flows from \(y, z \) to \(x \), so this requires \(lub(y, z) \leq x \)

More generally:

\[y := f(x_1, \ldots, x_n) \]

- the relation \(lub(x_1, \ldots, x_n) \leq y \) must hold
Compound Statements

\[x := y + z; \quad a := b * c - x; \]

- First statement: \(\text{lub}(y, z) \leq x \)
- Second statement: \(\text{lub}(b, c, x) \leq a \)
- So, both must hold (i.e., be secure)

More generally:

\[S_1; \quad \ldots \quad S_n; \]

- Each individual \(S_i \) must be secure
Conditional Statements

if \(x + y < z \) then \(a := b \) else \(d := b \times c - x \); end

- The statement executed reveals information about \(x, y, z \), so \(\text{lub}(x, y, z) \leq \text{glb}(a, d) \)

More generally:

if \(f(x_1, \ldots, x_n) \) then \(S_1 \) else \(S_2 \); end

- \(S_1, S_2 \) must be secure
- \(\text{lub}(x_1, \ldots, x_n) \leq \text{glb}(y \mid y \text{ target of assignment in } S_1, S_2) \)
Iterative Statements

while $i < n$ do begin $a[i] := b[i]; i := i + 1;$ end

• Same ideas as for “if”, but must terminate

More generally:

while $f(x_1, \ldots, x_n)$ do S;

• Loop must terminate;
• S must be secure

• lub(x_1, \ldots, x_n) \leq glb($y \mid y$ target of assignment in S)
Iterative Statements

while $i < n$ do begin $a[i] := b[i]; i := i + 1;$ end

• Same ideas as for “if”, but must terminate

More generally:

while $f(x_1, \ldots, x_n)$ do $S;$

• Loop must terminate;
• S must be secure
• $lub(x_1, \ldots, x_n) \leq glb(y \mid y \text{ target of assignment in } S)$
Goto Statements

- No assignments
 - Hence no explicit flows
- Need to detect implicit flows
- *Basic block* is sequence of statements that have one entry point and one exit point
 - Control in block *always* flows from entry point to exit point
Example Program

proc tm(x: array[1..10][1..10] of int class {x};
 var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
 b_1 i := 1;
 b_2 L2: if i > 10 goto L7;
 b_3 j := 1;
 b_4 L4: if j > 10 then goto L6;
 b_5 y[j][i] := x[i][j]; j := j + 1; goto L4;
 b_6 L6: i := i + 1; goto L2;
 b_7 L7:
end;
Flow of Control

$b_1 \rightarrow b_2 \quad i > n \quad b_2 \rightarrow b_7$

$b_6 \rightarrow b_4 \quad j > n \quad b_4 \rightarrow b_3 \quad i \leq n \quad b_3 \rightarrow b_7$

$b_4 \rightarrow b_5 \quad j \leq n \quad b_5 \rightarrow b_4
IFDs

- Idea: when two paths out of basic block, implicit flow occurs
 - Because information says *which* path to take
- When paths converge, either:
 - Implicit flow becomes irrelevant; or
 - Implicit flow becomes explicit
- *Immediate forward dominator* of basic block b (written $IFD(b)$) is first basic block lying on all paths of execution passing through b
IFD Example

- In previous procedure:
 - $\text{IFD}(b_1) = b_2$ one path
 - $\text{IFD}(b_2) = b_7$ $b_2 \rightarrow b_7$ or $b_2 \rightarrow b_3 \rightarrow b_6 \rightarrow b_2 \rightarrow b_7$
 - $\text{IFD}(b_3) = b_4$ one path
 - $\text{IFD}(b_4) = b_6$ $b_4 \rightarrow b_6$ or $b_4 \rightarrow b_5 \rightarrow b_6$
 - $\text{IFD}(b_5) = b_4$ one path
 - $\text{IFD}(b_6) = b_2$ one path
Requirements

• B_i is set of basic blocks along an execution path from b_i to IFD(b_i)
 – Analogous to statements in conditional statement

• x_{i1}, \ldots, x_{in} variables in expression selecting which execution path containing basic blocks in B_i used
 – Analogous to conditional expression

• Requirements for secure:
 – All statements in each basic blocks are secure
 – $lub(x_{i1}, \ldots, x_{in}) \leq glb\{ y \mid y \text{ target of assignment in } B_i \}$
Example of Requirements

- Within each basic block:
 \[b_1: \text{Low} \leq i \quad b_3: \text{Low} \leq j \quad b_6: \text{lub}\{ \text{Low}, i \} \leq i \]
 \[b_5: \text{lub}(x[i][j], i, j) \leq y[j][i]; \text{lub}(\text{Low}, j) \leq j \]
 - Combining, \(\text{lub}(x[i][j], i, j) \leq y[j][i] \)
 - From declarations, true when \(\text{lub}(x, i) \leq y \)

- \(B_2 = \{ b_3, b_4, b_5, b_6 \} \)
 - Assignments to \(i, j, y[j][i] \); conditional is \(i \leq 10 \)
 - Requires \(i \leq \text{glb}(i, j, y[j][i]) \)
 - From declarations, true when \(i \leq y \)
Example (continued)

- $B_4 = \{ b_5 \}$
 - Assignments to $j, y[j][i]$; conditional is $j \leq 10$
 - Requires $j \leq \text{glb}(j, y[j][i])$
 - From declarations, means $i \leq y$

- Result:
 - Combine $\text{lub}(x, i) \leq y; \ i \leq y; \ i \leq y$
 - Requirement is $\text{lub}(x, i) \leq y$
Procedure Calls

\[tm(a, b); \]

From previous slides, to be secure, \(lub(x, i) \leq y \) must hold

- In call, \(x \) corresponds to \(a \), \(y \) to \(b \)
- Means that \(lub(a, i) \leq b \), or \(a \leq b \)

More generally:

\[
\text{proc } pn(i_1, \ldots, i_m: \text{int}; \text{var } o_1, \ldots, o_n: \text{int}) \begin{align*}
\text{begin} & \quad S \\
\text{end};
\end{align*}
\]

- \(S \) must be secure
- For all \(j \) and \(k \), if \(i_j \leq o_k \), then \(x_j \leq y_k \)
- For all \(j \) and \(k \), if \(o_j \leq o_k \), then \(y_j \leq y_k \)
Exceptions

```plaintext
proc copy(x: int class { x });
    var y: int class Low)

var sum: int class { x };
    z: int class Low;
begin
    y := z := sum := 0;
    while z = 0 do begin
        sum := sum + x;
        y := y + 1;
    end
end
```
Exceptions (cont)

• When sum overflows, integer overflow trap
 – Procedure exits
 – Value of x is MAXINT/y
 – Info flows from y to x, but $x \leq y$ never checked

• Need to handle exceptions explicitly
 – Idea: on integer overflow, terminate loop
 \[
 \text{on integer_overflow_exception sum do } z := 1; \]
 – Now info flows from sum to z, meaning $\text{sum} \leq z$
 – This is false ($\text{sum} = \{ x \}$ dominates $z = \text{Low}$)
Infinite Loops

proc copy(x: int 0..1 class { x });
 var y: int 0..1 class Low)
begin
 y := 0;
 while x = 0 do
 (* nothing *);
 y := 1;
end

• If $x = 0$ initially, infinite loop
• If $x = 1$ initially, terminates with y set to 1
• No explicit flows, but implicit flow from x to y
Semaphores

Use these constructs:

\[
\text{wait}(x): \quad \text{if } x = 0 \text{ then } \text{block until } x > 0; \quad x := x - 1;
\]

\[
\text{signal}(x): \quad x := x + 1;
\]

- \(x\) is semaphore, a shared variable
- Both executed atomically

Consider statement

\[
\text{wait}(sem); \quad x := x + 1;
\]

- Implicit flow from \(sem\) to \(x\)
 - Certification must take this into account!
Flow Requirements

• Semaphores in *signal* irrelevant
 – Don’t affect information flow in that process

• Statement S is a wait
 – $\text{shared}(S)$: set of shared variables read
 • Idea: information flows out of variables in $\text{shared}(S)$
 – $\text{fglb}(S)$: glb of assignment targets following S
 – So, requirement is $\text{shared}(S) \leq \text{fglb}(S)$

• `begin $S_1; \ldots S_n$ end`
 – All S_i must be secure
 – For all i, $\text{shared}(S_i) \leq \text{fglb}(S_i)$
Example

begin
 \[x := y + z; \quad (* S_1 *) \]
 \[\text{wait}(\text{sem}); \quad (* S_2 *) \]
 \[a := b \times c - x; \quad (* S_3 *) \]
end

• Requirements:
 - \(\text{lub}(y, z) \leq x \)
 - \(\text{lub}(b, c, x) \leq a \)
 - \(\text{sem} \leq a \)
 • Because \(fglb(S_2) = a \) and \(\text{shared}(S_2) = \text{sem} \)
Concurrent Loops

• Similar, but wait in loop affects all statements in loop
 – Because if flow of control loops, statements in loop before wait may be executed after wait

• Requirements
 – Loop terminates
 – All statements S_1, \ldots, S_n in loop secure
 – $\text{lub} (\text{shared}(S_1), \ldots, \text{shared}(S_n)) \leq \text{glb}(t_1, \ldots, t_m)$
 • Where t_1, \ldots, t_m are variables assigned to in loop
Loop Example

while $i < n$ do begin
 $a[i] := item;$ (* S_1 *)
 wait(sem); (* S_2 *)
 $i := i + 1;$ (* S_3 *)
end

• Conditions for this to be secure:
 – Loop terminates, so this condition met
 – S_1 secure if $\text{lub}(i, item) \leq a[i]$
 – S_2 secure if $\text{sem} \leq i$ and $\text{sem} \leq a[i]$
 – S_3 trivially secure
cobegin/coend

cobegin
 \[x := y + z; \quad (* \ S_1 \ *) \]
 \[a := b \times c - y; \quad (* \ S_2 \ *) \]

coend

• No information flow among statements
 – For \(S_1 \), \(\text{lub}(y, z) \leq x \)
 – For \(S_2 \), \(\text{lub}(b, c, y) \leq a \)

• Security requirement is both must hold
 – So this is secure if \(\text{lub}(y, z) \leq x \wedge \text{lub}(b, c, y) \leq a \)
Soundness

• Above exposition intuitive
• Can be made rigorous:
 – Express flows as types
 – Equate certification to correct use of types
 – Checking for valid information flows same as checking types conform to semantics imposed by security policy
Execution-Based Mechanisms

- Detect and stop flows of information that violate policy
 - Done at run time, not compile time
- Obvious approach: check explicit flows
 - Problem: assume for security, $x \leq y$

 if $x = 1$ then $y := a$;

 - When $x \neq 1$, $x = \text{High}$, $y = \text{Low}$, $a = \text{Low}$, appears okay
 — but implicit flow violates condition!
Fenton’s Data Mark Machine

• Each variable has an associated class
• Program counter (PC) has one too
• Idea: branches are assignments to PC, so you can treat implicit flows as explicit flows
• Stack-based machine, so everything done in terms of pushing onto and popping from a program stack
Instruction Description

• $skip$ means instruction not executed
• $push(x, x)$ means push variable x and its security class x onto program stack
• $pop(x, x)$ means pop top value and security class from program stack, assign them to variable x and its security class x respectively
Instructions

• \(x := x + 1 \) (increment)
 - Same as:
 \[\text{if } PC \leq x \text{ then } x := x + 1 \text{ else } \text{skip} \]

• if \(x = 0 \) then goto \(n \) else \(x := x - 1 \) (branch and save PC on stack)
 - Same as:
 \[\text{if } x = 0 \text{ then begin}
 \text{push}(PC, PC); \ PC := \text{lub}\{PC, x\}; \ PC := n;\]
 \[\text{end else if } PC \leq x \text{ then}
 x := x - 1\]
 \[\text{else}
 \text{skip; }\]
More Instructions

- if' \(x = 0 \) then goto \(n \) else \(x := x - 1 \) (branch without saving PC on stack)
 - Same as:

 \[
 \text{if } x = 0 \text{ then }
 \]

 \[
 \text{if } x \leq PC \text{ then } PC := n \text{ else skip }
 \]

 else

 \[
 \text{if } PC \leq x \text{ then } x := x - 1 \text{ else skip }
 \]
More Instructions

• return (go to just after last if)
 – Same as:
 \[\text{pop}(PC, PC); \]

• halt (stop)
 – Same as:
 \[\text{if program stack empty then halt} \]
 – Note stack empty to prevent user obtaining information from it after halting
Example Program

1 if $x = 0$ then goto 4 else $x := x - 1$
2 if $z = 0$ then goto 6 else $z := z - 1$
3 halt
4 $z := z + 1$
5 return
6 $y := y + 1$
7 return

- Initially $x = 0$ or $x = 1$, $y = 0$, $z = 0$
- Program copies value of x to y
Example Execution

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>PC</td>
<td>PC</td>
<td>stack</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Low</td>
<td>—</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>Low</td>
<td>—</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>z</td>
<td>(3, Low)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>z</td>
<td>(3, Low)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>Low</td>
<td>—</td>
</tr>
</tbody>
</table>
Handling Errors

• Ignore statement that causes error, but continue execution
 – If aborted or a visible exception taken, user could deduce information
 – Means errors cannot be reported unless user has clearance at least equal to that of the information causing the error
Variable Classes

• Up to now, classes fixed
 – Check relationships on assignment, etc.

• Consider variable classes
 – Fenton’s Data Mark Machine does this for \textit{PC}
 – On assignment of form \(y := f(x_1, \ldots, x_n) \), \(y \)
 changed to \(lub(x_1, \ldots, x_n) \)
 – Need to consider implicit flows, also
Example Program

(* Copy value from x to y
 * Initially, x is 0 or 1 *)
proc copy(x: int class { x };
 var y: int class { y })
var z: int class variable { Low };
begin
 y := 0;
 z := 0;
 if x = 0 then z := 1;
 if z = 0 then y := 1;
end;

• \(z\) changes when \(z\) assigned to
• Assume \(y < x\)
Analysis of Example

• $x = 0$
 - $z := 0$ sets z to Low
 - if $x = 0$ then $z := 1$ sets z to 1 and z to x
 - So on exit, $y = 0$

• $x = 1$
 - $z := 0$ sets z to Low
 - if $z = 0$ then $y := 1$ sets y to 1 and checks that lub
 \{Low, z\} $\leq y$
 - So on exit, $y = 1$

• Information flowed from x to y even though $y < x$
Handling This (1)

- Fenton’s Data Mark Machine detects implicit flows violating certification rules
Handling This (2)

- Raise class of variables assigned to in conditionals even when branch not taken
- Also, verify information flow requirements even when branch not taken
- Example:
 - In \(\text{if } x = 0 \text{ then } z := 1\), \(z\) raised to \(x\) whether or not \(x = 0\)
 - Certification check in next statement, that \(z \leq y\), fails, as \(z = x\) from previous statement, and \(y \leq x\)
Handling This (3)

- Change classes only when explicit flows occur, but all flows (implicit as well as explicit) force certification checks.

Example
- When \(x = 0 \), first “if” sets \(z \) to Low then checks \(x \leq z \)
- When \(x = 1 \), first “if” checks that \(x \leq z \)
- This holds if and only if \(x = \text{Low} \)
 - Not possible as \(y < x = \text{Low} \) and there is no such class.