
March 8, 2011	
 ECS 235B, Winter Quarter 2011	

Lecture 17: More Assurance	

•  Requirements assurance	

– Modeling system	

–  Justifying requirements	

•  Design assurance	

•  Documentation and specification	

•  Reviews of assurance evidence	

Slide #17-1	

March 8, 2011	

Requirements Assurance	

•  Specification describes of characteristics of
computer system or program	

•  Security specification specifies desired security
properties	

•  Must be clear, complete, unambiguous	

–  Something like “meets C2 security requirements”

not good: what are those requirements (actually, 34
of them!)	

ECS 235B, Winter Quarter 2011	
 Slide #17-2	

March 8, 2011	

Example	

•  “Users of the system must be identified and

authenticated” is ambiguous	

–  Type of id required—driver’s license, token?	

–  What is to be authenticated—user, representation of

identity, system?	

–  Who is to do the authentication—system, guard?	

ECS 235B, Winter Quarter 2011	
 Slide #17-3	

March 8, 2011	

Example	

•  “Users of the system must be identified to the

system and must have that identification
authenticated by the system” is less ambiguous	

–  Under what conditions must the user be identified to the

system—at login, time of day, or something else?	

ECS 235B, Winter Quarter 2011	
 Slide #17-4	

March 8, 2011	

Example	

•  “Users of the system must be identified to the

system and must have that identification
authenticated by the system before the system
performs any functions on behalf of that identity”	

–  Type of identification is user name	

–  User identification (name) to be authenticated	

–  System to authenticate	

–  Authentication to be done at login (before system

performs any action on behalf of user)	

ECS 235B, Winter Quarter 2011	
 Slide #17-5	

March 8, 2011	

Methods of Definition	

•  Extract applicable requirements from existing
security standards	

–  Tend to be semiformal	

•  Combine results of threat analysis with
components of existing policies to create a new
policy	

•  Map the system to existing model	

–  If model appropriate, creating a mapping from model to

system may be cheaper than requirements analysis	

ECS 235B, Winter Quarter 2011	
 Slide #17-6	

March 8, 2011	

Example	

•  System X: UNIX system with MAC based
on Bell-LaPadula Model	

– Mapping constructed in series of stages	

– Auditing also required	

ECS 235B, Winter Quarter 2011	
 Slide #17-7	

March 8, 2011	

Example Stage 1	

•  Map elements, state variables of BLP to entities in
System X	

–  Subject set S in BLP → set of processes	

–  Object set O in BLP → set of inode objects, IPC

objects, mail messages, processes as destinations,
passive entities	

–  Right set P in BLP → set of rights of system functions	

•  Functions that create entities, write entities, have write w	

•  Functions that read entities have right r	

•  Functions that execute, search entities have right r	

ECS 235B, Winter Quarter 2011	
 Slide #17-8	

March 8, 2011	

Example Stage 1	

–  Access set b in BLP → types of access	

•  Subjects can use rights r, w, a to access inode objects.	

–  Access control matrix a for current state in BLP →

current state of mandatory and discretionary controls	

–  Functions fs, fo, and fc in BLP → three functions	

•  f(s) is the maximum security level of subject s	

•  current-level(s) is current security level of subject s	

•  f(o) is the security level of object o	

ECS 235B, Winter Quarter 2011	
 Slide #17-9	

March 8, 2011	

Example Stage 1	

–  Hierarchy H in BLP → differently for different objects	

•  Inode objects are hierarchical trees represented by the file
system hierarchy	

•  Other object types map to discrete points in the hierarchy	

ECS 235B, Winter Quarter 2011	
 Slide #17-10	

March 8, 2011	

Example Stage 2	

•  Define BLP properties in language of System X and
show each property is consistent with BLP	

–  MAC property of BLP → user having over an object:	

•  read access iff user’s clearance dominates object’s classification	

•  write access over an object iff object’s classification dominates

user’s clearance.	

–  DAC property of BLP → user having access to object iff

owner of object has explicitly granted that user access to
object	

ECS 235B, Winter Quarter 2011	
 Slide #17-11	

March 8, 2011	

Example Stage 2	

•  Label inheritance, user level changes specific to

System X	

–  Security level of newly created object inherited from

creating subject	

–  Security level of initial process at user login, security

level of initial process after user level change, bounded
by security level range defined for that user and for the
terminal	

–  Security level of newly spawned process inherited from
parent, except for first process after a user level change	

–  When user’s level raised, child process does not inherit
write access to objects opened by parent	

–  When user’s level lowered, all processes, accesses
associated with higher privilege terminated	

ECS 235B, Winter Quarter 2011	
 Slide #17-12	

March 8, 2011	

Example Stage 2	

•  Reclassification property of System X	

–  Specially trusted users allowed to downgrade objects they
own within constraints of user’s authorizations.	

•  System X property of owner/group transfer allows
ownership or group membership of process to be
transferred to another user or group	

•  Status property is property of System X	

–  Restricts visibility of status information available to users

when they use standard System X set of commands	

ECS 235B, Winter Quarter 2011	
 Slide #17-13	

March 8, 2011	

Example Stage 3	

•  Designers define System X rules by
mapping System X system calls,
commands, and functions to BLP rules	

– Simple security condition, *-property, and

discretionary security property interpreted for
each type of access	

– From these interpretations, designers can
extract specific requirements for specific
accesses to particular types of objects. 	

ECS 235B, Winter Quarter 2011	
 Slide #17-14	

March 8, 2011	

Example Stage 4	

•  Designers show System X rules preserve security

properties	

–  Show that the rules enforce the properties directly; or 	

–  Map the rules directly to a BLP rule or a sequence of

BLP rules	

•  9 rules about current access	

•  5 rules about functions and security levels	

•  8 access permission rules	

•  8 more rules about subjects and objects	

–  Designers must show that each rule is consistent with
actions of System X.	

ECS 235B, Winter Quarter 2011	
 Slide #17-15	

March 8, 2011	

Justifying Requirements	

•  Show policy complete and consistent	

•  Example: ITSEC suitability analysis	

– Map threats to requirements and assumptions	

– Describe how references address threat	

ECS 235B, Winter Quarter 2011	
 Slide #17-16	

March 8, 2011	

Example: System Y Evaluation	

•  Threat T1: A person not authorized to use the

system gains access to the system and its facilities
by impersonating an authorized user.	

–  Requirement IA1: A user is permitted to begin a user

session only if the user presents a valid unique identifier
to the system and if the claimed identity of the user is
authenticated by the system by authenticating the
supplied password.	

–  Requirement IA2: Before the first user/system
interaction in a session, successful identification and
authentication of the user take place.	

ECS 235B, Winter Quarter 2011	
 Slide #17-17	

March 8, 2011	

System Y Assumptions	

•  Assumption A1: The product must be configured such that

only the approved group of users has physical access to the
system.	

•  Assumption A2: Only authorized users may physically
remove from the system the media on which authentication
data is stored.	

•  Assumption A3: Users must not disclose their passwords
to other individuals.	

•  Assumption A4: Passwords generated by the administrator
shall be distributed in a secure manner.	

ECS 235B, Winter Quarter 2011	
 Slide #17-18	

March 8, 2011	

System Y Mapping	

Threat	
 Security Target
Reference	

T1	
 IA1, IA2, A1, A2,
A3, A4	

ECS 235B, Winter Quarter 2011	
 Slide #17-19	

March 8, 2011	

System Y Justifications	

1.  The referenced requirements and assumptions guard

against unauthorized access. Assumption A1 restricts
physical access to the system to those authorized to use
it. Requirement IA1 requires all users to supply a valid
identity and confirming password. Requirement IA2
ensures that requirement IA1 cannot be bypassed.	

ECS 235B, Winter Quarter 2011	
 Slide #17-20	

March 8, 2011	

System Y Justifications	

2. 	
The referenced assumptions prevent unauthorized users

from gaining access by using a valid user’s identity and
password. Assumption A3 ensures that users keep their
passwords secret. Assumption A4 prevents unauthorized
users from intercepting new passwords when those
passwords are distributed to users. Finally, assumption
A2 prevents unauthorized access to authentication
information stored on removable media.	

These justifications provide an informal basis for asserting
that, if the assumptions hold and the requirements are met, the
threat is adequately handled.	

ECS 235B, Winter Quarter 2011	
 Slide #17-21	

March 8, 2011	

Design Assurance	

•  Process of establishing that design of
system sufficient to enforce security
requirements	

– Specify requirements (see above)	

– Specify system design	

– Examine how well design meets requirements	

ECS 235B, Winter Quarter 2011	
 Slide #17-22	

March 8, 2011	

Design Techniques	

•  Modularity	

– Makes system design easier to analyze	

– RVM: functions not related to security distinct

from modules supporting security functionality	

•  Layering	

– Makes system easier to understand	

– Supports information hiding	

ECS 235B, Winter Quarter 2011	
 Slide #17-23	

March 8, 2011	

Layering	

•  Develop specifications at each layer of abstraction	

–  subsystem or component: special-purpose division of a

larger entity	

•  Example: for OS, memory manager, process manager; Web

store: credit card handlers	

–  subcomponent: part of a component	

•  Example: I/O component has I/O managers and I/O drivers as
subcomponents	

–  module: set of related functions, data structures	

ECS 235B, Winter Quarter 2011	
 Slide #17-24	

March 8, 2011	

Example: Windows 2000 I/O
System	

Executive Component

WDM WMI
Routines Routines

PnP
Manager

Power
Manager Manager

I/O

Kernel Dr ivers Component

File System Win 2000
Drivers

Legacy
Drivers

Win32 Display
Drivers Drivers

WDM
Drivers

HAL Component

ECS 235B, Winter Quarter 2011	
 Slide #17-25	

March 8, 2011	

Design Document Contents	

•  Provide basis for analysis	

–  informal, semiformal, formal	

•  Must include:	

–  Security functions: high-level descriptions of functions that enforce

security and overview of protection approach	

–  External interfaces: interfaces visible to users, how the security

enforcement functions constrain them, and what the constraints
and effects should be	

–  Internal design: Design descriptions addressing the architecture in
terms of the next layer of decomposition; also, for each module,
identifies and describes all interfaces and data structures	

ECS 235B, Winter Quarter 2011	
 Slide #17-26	

March 8, 2011	

Security Functions	

•  Security functions summary specification

identifies high-level security functions defined
for the system	

1.  Description of individual security functions, complete
enough to show the intent of the function; tie to
requirements	

2.  Overview of set of security functions describing how
security functions work together to satisfy security
requirements	

3.  Mapping to requirements, specifying mapping
between security functions and security requirements. 	

ECS 235B, Winter Quarter 2011	
 Slide #17-27	

March 8, 2011	

External Interface	

•  High-level description of external interfaces to

system, component, subcomponent, or module	

1.  Component overview identifying the component, its

parent, how the component fits into the design 	

2.  Data descriptions identifying data types and

structures needed to support the external interface
descriptions specific to this component, and security
issues or protection requirements relevant to data
structures.	

ECS 235B, Winter Quarter 2011	
 Slide #17-28	

March 8, 2011	

External Interface	

•  High-level description of external interfaces to

system, component, subcomponent, or module	

3.  Interface descriptions including commands, system

calls, library calls, functions, and application program
interfaces as well as exception conditions and effects	

ECS 235B, Winter Quarter 2011	
 Slide #17-29	

March 8, 2011	

Example	

•  Routine for error handling subsystem that adds an
event to an existing log file	

Interface Name	

error_t add_logevent (handle_t handle, data_t event);	

Input Parameters	

handle 	
valid handle returned from previous call to

open_log	

event 	
buffer of event data with records in logevent format	

ECS 235B, Winter Quarter 2011	
 Slide #17-30	

March 8, 2011	

Example	

Exceptions	

•  Caller does not have permission to add to EVENT file.	

•  There is inadequate memory to add to an EVENT file.	

Effects	

Event is added to EVENT log.	

Output Parameters	

status 	
status_ok 	
/* routine completed successfully */	

	
no_memory 	
/* insufficient memory (failed) */	

	
permission_denied 	
/* no permission (failed) */	

Note	

	
add_logevent is a user-visible interface	

ECS 235B, Winter Quarter 2011	
 Slide #17-31	

March 8, 2011	

Internal Design	

•  Describes internal structures and functions of

components of system	

1.  Overview of the parent component; its high-level

purpose, function, security relevance	

2.  Detailed description of the component; its features,

functions, structure in terms of the subcomponents,
all interfaces (noting externally visible ones), effects,
exceptions, and error messages	

3.  Security relevance of the component in terms of
security issues that it and its subcomponents should
address	

ECS 235B, Winter Quarter 2011	
 Slide #17-32	

March 8, 2011	

Example: Parent Component	

•  Audit component is responsible for recording

accurate representation of all security-relevant
events in the system and ensuring that integrity
and confidentiality of the records are maintained. 	

–  Audit view: subcomponent providing authorized users

with a mechanism for viewing audit records.	

–  Audit logging: subcomponent records the auditable

events, as requested by the system, in the format
defined by the requirements	

–  Audit management: subcomponent handling
administrative interface used to define what is audited.	

ECS 235B, Winter Quarter 2011	
 Slide #17-33	

March 8, 2011	

Example: Detailed Component
Description	

•  Audit logging subcomponent records auditable
events in a secure fashion. It checks whether
requested audit event meets conditions for
recording.	

•  Subcomponent formats audit record and includes
all attributes of security-relevant event; generates
the audit record in the predefined format	

•  Audit logging subcomponent handles exception
conditions	

–  Error writing to the log	

ECS 235B, Winter Quarter 2011	
 Slide #17-34	

March 8, 2011	

Example	

•  Audit logging subcomponent uses one global
structure:	

structure audit_config 	
/* defines configuration of */	

	
 	
 	
 	
 	
/* which events to audit */	

•  The audit logging subcomponent has two external
interfaces:	

add_logevent() 	
 	
/* log an event */	

logevent() 	
 	
 	
/* ask to log event */	

ECS 235B, Winter Quarter 2011	
 Slide #17-35	

March 8, 2011	

Example: Security Relevance	

•  Audit logging subcomponent monitors
security-relevant events and records those
events matching configurable audit selection
criteria	

– Security-relevant events include attempts to

violate security policy, successful completion
of security-relevant actions	

ECS 235B, Winter Quarter 2011	
 Slide #17-36	

March 8, 2011	

Low-Level Design	

•  Focus on internal logic, data structures,
interfaces; may include pseudocode	

1.  Overview, giving the purpose of the module and its
interrelations with other modules, especially
dependencies on other modules	

2.  Security relevance of the module, showing how the
module addresses security issues	

3.  Individual module interfaces, identifying all interfaces
to the module, and those externally visible.	

ECS 235B, Winter Quarter 2011	
 Slide #17-37	

March 8, 2011	

Example: Overview	

•  Audit logging subcomponent	

–  Responsible for monitoring and recording security-
relevant events	

–  Depends on I/O system and process system components	

•  Audit management subcomponent	

–  Depends on audit logging subcomponent for accurate
implementation of audit parameters configured by audit
management subcomponent 	

•  All system components depend on audit logging
component to produce their audit records	

ECS 235B, Winter Quarter 2011	
 Slide #17-38	

March 8, 2011	

Example: Overview	

•  Audit logging subcomponent:	

Variables	

structure logevent_t 	
defines audit record	

structure audit_ptr 	
current position in audit file	

file_ptr audit_fd 	
file descriptor of audit file	

Global structure	

structure audit_config	
/* defines configuration */	

	
 	
 	
 	
/* of which events are to be audited */	

External interfaces	

add_logevent() 	
 /* begin logging events of given type */	

logevent() 	
 	
 /* ask to log event */	

ECS 235B, Winter Quarter 2011	
 Slide #17-39	

March 8, 2011	

Example: Security Relevance	

•  Audit logging subcomponent monitors security-
relevant events, records those events matching the
configurable audit selection criteria	

–  Example: attempts to violate security policy 	

–  Example: successful completion of security-relevant

actions	

•  Audit logging subcomponent must ensure no audit

records are lost, and are protected from tampering	

ECS 235B, Winter Quarter 2011	
 Slide #17-40	

March 8, 2011	

Example: Individual Interfaces	

•  logevent() only external interface	

verify function parameters	

call check_selection_parameters to determine if system

has been configured to audit event	

if check_selection_parameters then	

	
 call create_logevent	

	
 call write_logevent	

	
 return success or error number	

else	

	
 return success	

ECS 235B, Winter Quarter 2011	
 Slide #17-41	

March 8, 2011	

Example: Individual Interfaces	

•  add_logevent() available only to privileged users	

verify caller has privilege/permission to use this function	

if caller does not have permission	

	
return permission_denied	

verify function parameters	

call write_logevent for each event record	

return success or error number from write_logevent	

ECS 235B, Winter Quarter 2011	
 Slide #17-42	

March 8, 2011	

Internal Design	

•  Introduction: purpose, scope, target audience	

•  Component overview: identifies modules, data

structures; how data is transmitted; security
relevance and functionality	

•  Detailed module designs	

–  Module #1: module’s interrelations with other modules,

local data structures, its control and data flows, security	

•  Interface Designs: describes each interface	

•  Interface 1a: security relevance, external visibility, purpose,

effects, exceptions, error messages, and results	

ECS 235B, Winter Quarter 2011	
 Slide #17-43	

March 8, 2011	

Example	

•  Windows 2000 I/O System	

–  High-level design document describes I/O system as a
whole	

•  Necessary descriptions of executive, kernel driver, HAL	

–  Describes first level of design decomposition	

•  Next level of decomposition	

–  High-level design document for I/O file drivers	

–  Internal design spec for HAL component	

•  Internal design specs for each subcomponent of I/
O file drivers	

ECS 235B, Winter Quarter 2011	
 Slide #17-44	

March 8, 2011	

Documentation and Specification	

•  Time, cost, efficiency may impact how
complete set of documents prepared	

•  Different types of specifications	

– Modification Specifications	

– Security Specifications	

– Formal Specifications	

	

ECS 235B, Winter Quarter 2011	
 Slide #17-45	

March 8, 2011	

Modification Specifications	

•  Used when system built from previous
versions or components	

– Specifications for these versions or components	

– Specifications for changes to, additions of, and

methods for deleting modules, functions,
components	

•  Developer understands the system upon
which the new system is based	

ECS 235B, Winter Quarter 2011	
 Slide #17-46	

March 8, 2011	

Security Considerations	

•  Security analysis must rest on specification
of current system, not previous ones or
changes only	

–  If modification specifications are only ones,

security analysis based upon incomplete
specifications	

–  If previous system has full security
specifications, then analysis may be complete	

ECS 235B, Winter Quarter 2011	
 Slide #17-47	

March 8, 2011	

Security Specifications	

•  Used when design specifications adequate
except for security issues	

•  Develop supplemental specifications to
describe missing security functionality	

– Develop document that starts with security

functions summary specification	

– Expand to address security issues of

components, subcomponents, modules,
functions	

ECS 235B, Winter Quarter 2011	
 Slide #17-48	

March 8, 2011	

Example: System X	

•  Underlying UNIX system completely specified,

including complete functional specifications and
internal design specifications	

–  Neither covered security well, let alone document new

functionality	

ECS 235B, Winter Quarter 2011	
 Slide #17-49	

March 8, 2011	

Example: System X	

•  Team supplemented existing documentation with

security architecture document	

–  Addresses deficiencies of existing documentation	

–  Gives complete overview of each security function	

–  Additional documentation describes external interface,

internal design of all functions	

ECS 235B, Winter Quarter 2011	
 Slide #17-50	

March 8, 2011	

Formal Specifications	

•  Any specification can be formal	

•  Written in formal language, with well-

defined syntax and sound semantics	

•  Supporting tools allow checking	

– Parsers	

– Theorem provers	

ECS 235B, Winter Quarter 2011	
 Slide #17-51	

March 8, 2011	

Justifications	

•  Formal techniques	

– Proofs of correctness, consistency	

•  Informal techniques	

– Requirements tracing: showing which specific

security requirements are met by parts of a
specification	

–  Informal correspondence: showing a
specification is consistent with adjacent level of
specification	

ECS 235B, Winter Quarter 2011	
 Slide #17-52	

March 8, 2011	

Requirements and Informal
Correspondence	

Security Functional Requirements

External Functional Specifications

Internal Design Specifications

Implementation Code

4

5

1

2

3

ECS 235B, Winter Quarter 2011	
 Slide #17-53	

