Outline for January 18, 2012

Reading: §3.3

- 1. Sharing
 - a. Definition: $can \bullet share(r, \mathbf{x}, \mathbf{y}, G_0)$ true iff there exists a sequence of protection graphs $G_0, ..., G_n$ such that $G_0 \vdash^* G_n$ using only take, grant, create, remove rules and in G_n , there is an edge from \mathbf{x} to \mathbf{y} labeled r
 - b. Theorem: $can \bullet share(r, \mathbf{x}, \mathbf{y}, G_0)$ iff there is an edge from \mathbf{x} to \mathbf{y} labeled r in G_0 , or all of the following hold:
 - i. there is a vertex \mathbf{y}' with an edge from \mathbf{y}' to \mathbf{y} labeled r;
 - ii. there is a subject \mathbf{y}'' which terminally spans to \mathbf{y}' , or $\mathbf{y}'' = \mathbf{y}'$;
 - iii. there is a subject \mathbf{x}' which initially spans to \mathbf{x} , or $\mathbf{x}' = \mathbf{x}$; and
 - iv. there is a sequence of islands $I_1, ..., I_n$ connected by bridges for which $\mathbf{x}' \in I_1$ and $\mathbf{y}' \in I_n$.
- 2. Model Interpretation
 - a. ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
 - b. Theorem: G_0 protection graph with exactly one subject, no edges; R set of rights. Then $G_0 \vdash^* G_n$ iff G_0 is a finite directed graph containing subjects and objects only, with edges labeled from nonempty subsets of R, and with at least one subject with no incoming edges
 - c. Example: shared buffer managed by trusted third party
- 3. Stealing
 - a. Definition: $can \bullet steal(r, \mathbf{x}, \mathbf{y}, G_0)$ true iff there is no edge from \mathbf{x} to \mathbf{y} labeled r in G_0 , and there exists a sequence of protection graphs $G_0, ..., G_n$ such that $G_0 \vdash^* G_n$ in which:
 - i. G_n has an edge from **x** to **y** labeled r
 - ii. There is a sequence of rule applications $\rho_1, ..., \rho_n$ such that $G_{i-1} \vdash G_i$; and
 - iii. For all vertices $\mathbf{v}, \mathbf{w} \in G_{i-1}$, if there is an edge from \mathbf{v} to \mathbf{y} in G_0 labeled r, then ρ_i is not of the form " \mathbf{v} grants (r to \mathbf{y}) to \mathbf{w} "
 - b. Example
- 4. Conspiracy
 - a. Access set
 - b. Deletion set
 - c. Conspiracy graph
 - d. I, T sets
 - e. Theorem: $can \cdot share(\alpha, \mathbf{x}, \mathbf{y}, G_0)$ iff there is a path from some $h(\mathbf{p}) \in I(\mathbf{x})$ to some $h(\mathbf{q}) \in T(\mathbf{y})$