Outline for January 18, 2012

Reading: §3.3

1. Sharing
 a. Definition: \(\text{can}_\bullet \text{share}(r, x, y, G_0) \) true iff there exists a sequence of protection graphs \(G_0, ..., G_n \) such that \(G_0 \vdash^* G_n \) using only take, grant, create, remove rules and in \(G_n \), there is an edge from \(x \) to \(y \) labeled \(r \).
 b. Theorem: \(\text{can}_\bullet \text{share}(r, x, y, G_0) \) iff there is an edge from \(x \) to \(y \) labeled \(r \) in \(G_0 \), or all of the following hold:
 i. there is a vertex \(y' \) with an edge from \(y' \) to \(y \) labeled \(r \);
 ii. there is a subject \(y'' \) which terminally spans to \(y' \), or \(y'' = y' \);
 iii. there is a subject \(x' \) which initially spans to \(x \), or \(x' = x \); and
 iv. there is a sequence of islands \(I_1, ..., I_n \) connected by bridges for which \(x' \in I_1 \) and \(y' \in I_n \).

2. Model Interpretation
 a. ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
 b. Theorem: \(G_0 \) protection graph with exactly one subject, no edges; \(R \) set of rights. Then \(G_0 \vdash^* G_n \) iff \(G_0 \) is a finite directed graph containing subjects and objects only, with edges labeled from nonempty subsets of \(R \), and with at least one subject with no incoming edges
 c. Example: shared buffer managed by trusted third party

3. Stealing
 a. Definition: \(\text{can}_\bullet \text{steal}(r, x, y, G_0) \) true iff there is no edge from \(x \) to \(y \) labeled \(r \) in \(G_0 \), and there exists a sequence of protection graphs \(G_0, ..., G_n \) such that \(G_0 \vdash^* G_n \) in which:
 i. \(G_n \) has an edge from \(x \) to \(y \) labeled \(r \)
 ii. There is a sequence of rule applications \(\rho_1, ..., \rho_n \) such that \(G_{i-1} \vdash G_i \); and
 iii. For all vertices \(v, w \in G_{i-1} \), if there is an edge from \(v \) to \(y \) in \(G_0 \) labeled \(r \), then \(\rho_i \) is not of the form \(\text{"v grants (r to y) to w"} \).
 b. Example

4. Conspiracy
 a. Access set
 b. Deletion set
 c. Conspiracy graph
 d. \(I, T \) sets
 e. Theorem: \(\text{can}_\bullet \text{share}(\alpha, x, y, G_0) \) iff there is a path from some \(h(p) \in I(x) \) to some \(h(q) \in T(y) \)