Outline for April 5, 2013

Reading: §3.1–3.2

Assignments due: Homework #1, due April 12, 2013

- 1. What is the safety question?
 - a. An unauthorized state is one in which a generic right r could be leaked into an entry in the ACM that did not previously contain r. An initial state is safe for r if it cannot lead to a state in which r could be leaked.
 - b. Question: in a given arbitrary protection system, is safety decidable?
- 2. Mono-operational case: there is an algorithm that decides whether a given mono-operational system and initial state is safe for a given generic right.
- 3. General case: It is undecidable whether a given state of a given protection system is safe for a given generic right.
 - a. Approach: represent Turing machine tape as access control matrix, transitions as commands
 - b. Reduce halting problem to it
- 4. Related results
 - a. The set of unsafe systems is recursively enumerable (exercise)
 - b. For protection systems without the *create* primitives, the question of safety is complete in **P-SPACE**.
 - c. Monotonicity: no *delete* or *destroy* primitive operations
 - d. The safety question for biconditional monotonic protection systems is undecidable.
 - e. The safety question for monoconditional monotonic protection systems is decidable.
 - f. The safety question for monoconditional protection systems without the destroy primitive operatin is decidable.
- 5. Take-Grant Protection Model
 - a. Counterpoint to HRU result
 - b. Symmetry of take and grant rights
 - c. Islands (maximal subject-only *tg*-connected subgraphs)
 - d. Bridges (as a combination of terminal and initial spans)
- 6. Sharing
 - a. Definition: $can \bullet share(\alpha, \mathbf{x}, \mathbf{y}, G_0)$ true iff there exists a sequence of protection graphs $G_0, ..., G_n$ such that $G_0 \vdash^* G_n$ using only take, grant, create, remove rules and in G_n , there is an edge from \mathbf{x} to \mathbf{y} labeled α