Outline for April 10, 2013

Reading: [Bis96]¹

Assignments due: Homework #1, due April 12, 2013

- 1. Conspiracy
 - a. Access set
 - b. Deletion set
 - c. Conspiracy graph
 - d. I, T sets
 - e. Theorem: $can \cdot share(\alpha, \mathbf{x}, \mathbf{y}, G_0)$ iff there is a path from some $h(\mathbf{p}) \in I(\mathbf{x})$ to some $h(\mathbf{q}) \in T(\mathbf{y})$
- 2. de facto rules
 - a. Explicit edges
 - b. Implicit edges
 - a. Pass
 - b. Post
 - c. Spy
 - d. Find
- 3. Paths and spans
 - a. *rw*-path, *rwtg*-path
 - b. rw-initial span
 - c. rw-terminal span
 - d. Connection
- 4. Information flow from ${\bf x}$ to ${\bf y}$
 - a. Definition: $can \bullet know(\mathbf{x}, \mathbf{y}, G_0)$ true iff there exists a sequence of protection graphs $G_0, ..., G_n$ such that $G_0 \vdash^* G_n$ using the *de jure* and *de facto* rules and in G_n , there is an edge from \mathbf{x} to \mathbf{y} labeled r or an edge from \mathbf{y} to \mathbf{x} labeled w, and if the edge is explicit, its source is a subject
 - b. Theorem: $can \bullet know(r, \mathbf{x}, \mathbf{y}, G_0)$ iff there is a sequence of subjects $\mathbf{u}_1, \ldots, \mathbf{u}_n, n \ge 1$, in G_0 , such that the following hold:
 - i. $\mathbf{u}_1 = \mathbf{x}$ or \mathbf{u}_1 rw-terminally spans to \mathbf{x} ;
 - ii. $\mathbf{u}_n = \mathbf{y}$ or \mathbf{u}_n rw-terminally spans to \mathbf{y} ; and
 - iii. for all i such that $1 \le i < n$, there is an rwtg-path between \mathbf{u}_i and \mathbf{u}_{i+1} with associated word in $B \cup C$.
- 5. Snooping
 - a. Definition: $can \bullet snoop(r, \mathbf{x}, \mathbf{y}, G_0)$ true iff $can \bullet steal(r, \mathbf{x}, \mathbf{y}, G_0)$ or there exists a sequence of graphs and rule applications $G_0 \vdash_{\rho_1} \ldots \vdash_{\rho_n} G_n$ for which all the following conditions hold:
 - i. there is no explicit edge from \mathbf{x} to \mathbf{y} labeled r in G_0 ;
 - ii. there is an implicit edge from \mathbf{x} to \mathbf{y} labeled r in G_n ; and
 - iii. neither **y** nor any vertex directly connected to **y** in G_0 is an actor in a grant rule or a *de facto* rule resulting in an (explicit or implicit) read edge with **y** as its target
 - b. Example
 - c. Theorem: For distinct vertices \mathbf{x} and \mathbf{y} in a protection graph G_0 with explicit edges only, $can \bullet snoop(\mathbf{x}, \mathbf{y}, G_0)$ iff $can \bullet steal(r, \mathbf{x}, \mathbf{y}, G_0)$ or the following hold simultaneously:
 - i. there is no edge from \mathbf{x} to \mathbf{y} labeled r in G_0 .
 - ii. there is a subject \mathbf{x}' such that $\mathbf{x}' = \mathbf{x}$ or \mathbf{x}' rw-initially spans to \mathbf{x} i G_0 ;
 - iii. there is a subject vertex \mathbf{y}' such that $\mathbf{y}' \neq \mathbf{y}$, there is no edge labeled r from \mathbf{y}' to \mathbf{y} in G_0 , and \mathbf{y}' rw-terminally spans to \mathbf{y} in G_0 ; and
 - iv. $can \bullet know(\mathbf{x}', \mathbf{y}', G_0)$ holds.

¹This is available in the Resources area of SmartSite; look in the folder "Handouts"