Lecture 18

- Identity on the web
- Pseudonymity and anonymity
- Information flow
- Basics and background
 - Entropy
- Nonlattice flow policies
Identity on the Web

• Host identity
 – Static identifiers: do not change over time
 – Dynamic identifiers: changes as a result of an event or the passing of time

• State and Cookies

• Anonymity
 – Anonymous email
 – Anonymity: good or bad?
Host Identity

• Bound up to networking
 – Not connected: pick any name
 – Connected: one or more names depending on interfaces, network structure, context

• *Name* identifies principal

• *Address* identifies location of principal
 – May be virtual location (network segment) as opposed to physical location (room 222)
Example

• Layered network
 – MAC layer
 • Ethernet address: 00:05:02:6B:A8:21
 • AppleTalk address: network 51, node 235
 – Network layer
 • IP address: 192.168.35.89
 – Transport layer
 • Host name: cherry.orchard.chekhov.ru
Danger!

• Attacker spoofs identity of another host
 – Protocols at, above the identity being spoofed will fail
 – They rely on spoofed, and hence faulty, information

• Example: spoof IP address, mapping between host names and IP addresses
Domain Name Server

- Maps transport identifiers (host names) to network identifiers (host addresses)
 - Forward records: host names \rightarrow IP addresses
 - Reverse records: IP addresses \rightarrow host names
- Weak authentication
 - Not cryptographically based
 - Various techniques used, such as reverse domain name lookup
Reverse Domain Name Lookup

- Validate identity of peer (host) name
 - Get IP address of peer
 - Get associated host name via DNS
 - Get IP addresses associated with host name from DNS
 - If first IP address in this set, accept name as correct; otherwise, reject as spoofed

- If DNS corrupted, this won’t work
Dynamic Identifiers

• Assigned to principals for a limited time
 – Server maintains pool of identifiers
 – Client contacts server using *local identifier*
 • Only client, server need to know this identifier
 – Server sends client *global identifier*
 • Client uses global identifier in other contexts, for example to talk to other hosts
 • Server notifies intermediate hosts of new client, global identifier association
Example: DHCP

- DHCP server has pool of IP addresses
- Laptop sends DHCP server its MAC address, requests IP address
 - MAC address is local identifier
 - IP address is global identifier
- DHCP server sends unused IP address
 - Also notifies infrastructure systems of the association between laptop and IP address
- Laptop accepts IP address, uses that to communicate with hosts other than server
Example: Gateways

- Laptop wants to access host on another network
 - Laptop’s address is 10.1.3.241
- Gateway assigns legitimate address to internal address
 - Say IP address is 101.43.21.241
 - Gateway rewrites all outgoing, incoming packets appropriately
 - Invisible to both laptop, remote peer
- Internet protocol NAT works this way
Weak Authentication

- Static: host/name binding fixed over time
- Dynamic: host/name binding varies over time
 - Must update reverse records in DNS
 - Otherwise, the reverse lookup technique fails
 - Cannot rely on binding remaining fixed unless you know the period of time over which the binding persists
DNS Security Issues

- Trust is that name/IP address binding is correct
- Goal of attacker: associate incorrectly an IP address with a host name
 - Assume attacker controls name server, or can intercept queries and send responses
Attacks

• Change records on server
• Add extra record to response, giving incorrect name/IP address association
 – Called “cache poisoning”
• Attacker sends victim request that must be resolved by asking attacker
 – Attacker responds with answer plus two records for address spoofing (1 forward, 1 reverse)
 – Called “ask me”
Cookies

- Token containing information about state of transaction on network
 - Usual use: refers to state of interaction between web browser, client
 - Idea is to minimize storage requirements of servers, and put information on clients
- Client sends cookies to server
Some Fields in Cookies

- **name, value**: name has given value
- **expires**: how long cookie valid
 - Expired cookies discarded, not sent to server
 - If omitted, cookie deleted at end of session
- **domain**: domain for which cookie intended
 - Consists of last n fields of domain name of server
 - *Must* have at least one “.” in it
- **secure**: send only over secured (SSL, HTTPS) connection
Example

• Caroline puts 2 books in shopping cart at books.com
 – Cookie: name bought, value BK=234&BK=8753, domain .books.com

• Caroline looks at other books, but decides to buy only those
 – She goes to the purchase page to order them

• Server requests cookie, gets above
 – From cookie, determines books in shopping cart
Who Can Get the Cookies?

• Web browser can send *any* cookie to a web server
 – Even if the cookie’s domain does not match that of the web server
 – Usually controlled by browser settings

• Web server can *only* request cookies for its domain
 – Cookies need not have been sent by that browser
Where Did the Visitor Go?

• Server books.com sends Caroline 2 cookies
 – First described earlier
 – Second has name “id”, value “books.com”, domain “adv.com”

• Advertisements at books.com include some from site adv.com
 – When drawing page, Caroline’s browser requests content for ads from server “adv.com”
 – Server requests cookies from Caroline’s browser
 – By looking at value, server can tell Caroline visited “books.com”
Anonymity on the Web

- Recipients can determine origin of incoming packet
 - Sometimes not desirable
- Anonymizer: a site that hides origins of connections
 - Usually a proxy server
 - User connects to anonymizer, tells it destination
 - Anonymizer makes connection, sends traffic in both directions
 - Destination host sees only anonymizer
Example: \textit{anon.penet.fi}

- Offered anonymous email service
 - Sender sends letter to it, naming another destination
 - Anonymizer strips headers, forwards message
 - Assigns an ID (say, 1234) to sender, records real sender and ID in database
 - Letter delivered as if from anon1234@anon.penet.fi
 - Recipient replies to that address
 - Anonymizer strips headers, forwards message as indicated by database entry
Problem

• Anonymizer knows who sender, recipient really are

• Called pseudo-anonymous remailer or pseudonymous remailer
 – Keeps mappings of anonymous identities and associated identities

• If you can get the mappings, you can figure out who sent what
More *anon.penet.fi*

- Material claimed to be copyrighted sent through site
- Finnish court directed owner to reveal mapping so plaintiffs could determine sender
- Owner appealed, subsequently shut down site
Cypherpunk Remailer

• Remailer that deletes header of incoming message, forwards body to destination
• Also called *Type I Remailer*
• No record kept of association between sender address, remailer’s user name
 – Prevents tracing, as happened with *anon.penet.fi*
• Usually used in a chain, to obfuscate trail
 – For privacy, body of message may be enciphered
Cypherpunk Remailer Message

- Encipher message
- Add destination header
- Add header for remailer \(n \)
- Add header for remailer 2

Hi, Alice,
It’s SQUEAMISH OSSIFRIGE
Bob
Weaknesses

• Attacker monitoring entire network
 – Observes in, out flows of remailers
 – Goal is to associate incoming, outgoing messages

• If messages are cleartext, trivial
 – So assume all messages enciphered

• So use traffic analysis!
 – Used to determine information based simply on movement of messages (traffic) around the network
Attacks

• If remailer forwards message before next message arrives, attacker can match them up
 – Hold messages for some period of time, greater than the message interarrival time
 – Randomize order of sending messages, waiting until at least \(n \) messages are ready to be forwarded
 • Note: attacker can force this by sending \(n-1 \) messages into queue
Attacks

- As messages forwarded, headers stripped so message size decreases
 - Pad message with garbage at each step, instructing next remailer to discard it
- Replay message, watch for spikes in outgoing traffic
 - Remailer can’t forward same message more than once
Mixmaster Remailer

- Cypherpunk remailer that handles only enciphered mail and pads (or fragments) messages to fixed size before sending them
 - Also called *Type II Remailer*
 - Designed to hinder attacks on Cypherpunk remailers
 - Messages uniquely numbered
 - Fragments reassembled *only* at last remailer for sending to recipient
Cypherpunk Remailer Message

```
enciphered with RSA for remailer #1
remailer #2 address
packet ID: 135
Triple DES key: 1

enciphered with Triple DES key #1

enciphered with RSA for remailer #2
final hop address
packet ID: 168
message ID: 7839
Triple DES key: 2
random garbage

enciphered with Triple DES key #2
recipient’s address
any mail headers to add
message
padding if needed
```
Anonymity Itself

• Some purposes for anonymity
 – Removes personalities from debate
 – With appropriate choice of pseudonym, shapes course of debate by implication
 – Prevents retaliation

• Are these benefits or drawbacks?
 – Depends on society, and who is involved
Privacy

- Anonymity protects privacy by obstructing amalgamation of individual records
- Important, because amalgamation poses 3 risks:
 - Incorrect conclusions from misinterpreted data
 - Harm from erroneous information
 - Not being let alone
- Also hinders monitoring to deter or prevent crime
- Conclusion: anonymity can be used for good or ill
 - Right to remain anonymous entails responsibility to use that right wisely
Key Points

- Identity specifies a principal (unique entity)
 - Same principal may have many different identities
 - Function (role)
 - Associated principals (group)
 - Individual (user/host)
 - These may vary with view of principal
 - Different names at each network layer, for example
 - Unique naming a difficult problem
 - Anonymity possible; may or may not be desirable
 - Power to remain anonymous includes responsibility to use that power wisely
Information Flow

- Basics and background
 - Entropy
- Nonlattice flow policies
- Compiler-based mechanisms
- Execution-based mechanisms
- Examples
 - Security Pipeline Interface
 - Secure Network Server Mail Guard
Basics

- Bell-LaPadula Model embodies information flow policy
 - Given compartments \(A, B \), info can flow from \(A \) to \(B \) iff \(B \text{ dom } A \)

- Variables \(x, y \) assigned compartments \(x, y \) as well as values
 - If \(x = A \) and \(y = B \), and \(A \text{ dom } B \), then \(x := y \) allowed but not \(y := x \)
Quick Review of Entropy

• Random variables
• Joint probability
• Conditional probability
• Entropy (or uncertainty in bits)
• Joint entropy
• Conditional entropy
• Applying it to secrecy of ciphers
Random Variable

• Variable that represents outcome of an event
 – X represents value from roll of a fair die; probability for rolling n: $p(X = n) = 1/6$
 – If die is loaded so 2 appears twice as often as other numbers, $p(X = 2) = 2/7$ and, for $n \neq 2$, $p(X = n) = 1/7$
• Note: $p(X)$ means specific value for X doesn’t matter
 – Example: all values of X are equiprobable
Joint Probability

• Joint probability of X and Y, $p(X, Y)$, is probability that X and Y simultaneously assume particular values
 – If X, Y independent, $p(X, Y) = p(X)p(Y)$

• Roll die, toss coin
 – $p(X = 3, Y = \text{heads}) = p(X = 3)p(Y = \text{heads}) = 1/6 \times 1/2 = 1/12$
Two Dependent Events

• \(X = \) roll of red die, \(Y = \) sum of red, blue die rolls

 \[
 \begin{align*}
 p(Y=2) &= 1/36 & p(Y=3) &= 2/36 & p(Y=4) &= 3/36 & p(Y=5) &= 4/36 \\
 p(Y=6) &= 5/36 & p(Y=7) &= 6/36 & p(Y=8) &= 5/36 & p(Y=9) &= 4/36 \\
 p(Y=10) &= 3/36 & p(Y=11) &= 2/36 & p(Y=12) &= 1/36
 \end{align*}
 \]

• Formula:

 \[
 p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108
 \]
Conditional Probability

- Conditional probability of X given Y, written $p(X \mid Y)$, is probability that X takes on a particular value given Y has a particular value.

- Continuing example …
 - $p(Y = 7 \mid X = 1) = 1/6$
 - $p(Y = 7 \mid X = 3) = 1/6$
Relationship

- \(p(X, Y) = p(X \mid Y) \ p(Y) = p(X) \ p(Y \mid X) \)

- **Example:**
 - \(p(X = 3, Y = 8) = p(X = 3 \mid Y = 8) \ p(Y = 8) = (1/5)(5/36) = 1/36 \)

- **Note:** if \(X, Y \) independent:
 - \(p(X \mid Y) = p(X) \)
Entropy

• Uncertainty of a value, as measured in bits
• Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
 – Therefore entropy of X is $H(X) = 1$
• Formal definition: random variable X, values x_1, \ldots, x_n; so $\sum_i p(X = x_i) = 1$

 $$H(X) = -\sum_i p(X = x_i) \lg p(X = x_i)$$
Heads or Tails?

- \(H(X) = -p(X = \text{heads}) \log p(X = \text{heads}) \)

 \[= -(1/2) \log (1/2) - (1/2) \log (1/2) \]

- \[= -(1/2) (-1) - (1/2) (-1) = 1 \]

- Confirms previous intuitive result
\(n \)-Sided Fair Die

\[
H(X) = -\sum_i p(X = x_i) \log p(X = x_i)
\]

As \(p(X = x_i) = 1/n \), this becomes

\[
H(X) = -\sum_i (1/n) \log (1/n) = -n(1/n) (-\log n)
\]

so

\[
H(X) = \log n
\]

which is the number of bits in \(n \), as expected
Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul

\(W \) represents the winner. What is its entropy?

- \(w_1 = \text{Ann}, \ w_2 = \text{Pam}, \ w_3 = \text{Paul} \)
- \(p(W = w_1) = p(W = w_2) = 2/5, \ p(W = w_3) = 1/5 \)

• So \(H(W) = -\sum p(W = w_i) \lg p(W = w_i) \)
 \[= - (2/5) \lg (2/5) - (2/5) \lg (2/5) - (1/5) \lg (1/5) \]
 \[= - (4/5) + \lg 5 \approx 1.52 \]

• If all equally likely to win, \(H(W) = \lg 3 = 1.58 \)