Lecture 19

- Information flow
- Basics and background
 - Entropy
- Non-lattice flow policies
- Compiler-based mechanisms

Entropy

- Uncertainty of a value, as measured in bits
- Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
 Therefore entropy of X is H(X) = 1
- Formal definition: random variable *X*, values $x_1, ..., x_n$; so $\Sigma_i p(X = x_i) = 1$ $H(X) = -\Sigma_i p(X = x_i) \lg p(X = x_i)$

Heads or Tails?

- $H(X) = -p(X = \text{heads}) \lg p(X = \text{heads})$ $-p(X = \text{tails}) \lg p(X = \text{tails})$ $= -(1/2) \lg (1/2) - (1/2) \lg (1/2)$ = -(1/2) (-1) - (1/2) (-1) = 1
- Confirms previous intuitive result

n-Sided Fair Die

$$H(X) = -\Sigma_i p(X = x_i) \lg p(X = x_i)$$

As $p(X = x_i) = 1/n$, this becomes
 $H(X) = -\Sigma_i (1/n) \lg (1/n) = -n(1/n) (-\lg n)$
so
 $H(X) = \lg n$

which is the number of bits in n, as expected

Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul *W* represents the winner. What is its entropy?

$$-w_1 = \text{Ann}, w_2 = \text{Pam}, w_3 = \text{Paul}$$
$$-p(W=w_1) = p(W=w_2) = 2/5, p(W=w_3) = 1/5$$

• So
$$H(W) = -\sum_{i} p(W = w_{i}) \log p(W = w_{i})$$

= $-(2/5) \log (2/5) - (2/5) \log (2/5) - (1/5) \log (1/5)$
= $-(4/5) + \log 5 \approx 1.52$

• If all equally likely to win, $H(W) = \lg 3 = 1.58$

Joint Entropy

- *X* takes values from { x_1, \dots, x_n } - $\sum_i p(X = x_i) = 1$
- *Y* takes values from { y_1, \dots, y_m } - $\Sigma_i p(Y = y_i) = 1$
- Joint entropy of X, Y is: $-H(X, Y) = -\sum_{j} \sum_{i} p(X=x_{i}, Y=y_{j}) \log p(X=x_{i}, Y=y_{j})$

X: roll of fair die, Y: flip of coin p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12- As X and Y are independent $H(X, Y) = -\sum_{j} \sum_{i} p(X=x_{i}, Y=y_{j}) \lg p(X=x_{i}, Y=y_{j})$ $= -2 [6 [(1/12) \lg (1/12)]] = \lg 12$

Conditional Entropy

- X takes values from $\{x_1, \dots, x_n\}$ - $\sum_i p(X=x_i) = 1$
- *Y* takes values from $\{y_1, \dots, y_m\}$

$$-\Sigma_i p(Y=y_i) = 1$$

- Conditional entropy of *X* given $Y=y_j$ is:
 - $H(X | Y=y_j) = -\sum_i p(X=x_i | Y=y_j) \lg p(X=x_i | Y=y_j)$
- Conditional entropy of X given Y is: $- H(X | Y) = -\sum_{j} p(Y=y_{j}) \sum_{i} p(X=x_{i} | Y=y_{j}) \log p(X=x_{i} | Y=y_{j})$

- X roll of red die, Y sum of red, blue roll
- Note p(X=1 | Y=2) = 1, p(X=i | Y=2) = 0 for $i \neq 1$ - If the sum of the rolls is 2, both dice were 1
- $H(X|Y=2) = -\sum_{i} p(X=x_i | Y=2) \lg p(X=x_i | Y=2) = 0$
- Note p(X=i, Y=7) = 1/6
 - If the sum of the rolls is 7, the red die can be any of 1,
 ..., 6 and the blue die must be 7–roll of red die
- $H(X|Y=7) = -\sum_{i} p(X=x_i | Y=7) \lg p(X=x_i | Y=7)$ = -6 (1/6) lg (1/6) = lg 6

Perfect Secrecy

- Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
- $M = \{ m_1, \dots, m_n \}$ set of messages
- $C = \{ c_1, \dots, c_n \}$ set of messages
- Cipher c_i = E(m_i) achieves perfect secrecy if H(M | C) = H(M)

Entropy and Information Flow

- Idea: info flows from *x* to *y* as a result of a sequence of commands *c* if you can deduce information about *x* before *c* from the value in *y* after *c*
- Formally:
 - -s time before execution of c, t time after
 - $-H(x_s \mid y_t) < H(x_s \mid y_s)$
 - If no y at time s, then $H(x_s | y_t) < H(x_s)$

- Command is x := y + z; where:
 - $-0 \le y \le 7$, equal probability

-z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each

• *s* state before command executed; *t*, after; so

$$- H(y_s) = H(y_t) = -8(1/8) \lg (1/8) = 3$$

- $H(z_s) = H(z_t) = -(1/2) \lg (1/2) 2(1/4) \lg (1/4) = 1.5$
- If you know x_t , y_s can have at most 3 values, so $H(y_s | x_t) = -3(1/3) \lg (1/3) = \lg 3$

- Command is
 - if x = 1 then y := 0 else y := 1;

where:

-x, y equally likely to be either 0 or 1

- $H(x_s) = 1$ as x can be either 0 or 1 with equal probability
- $H(x_s | y_t) = 0$ as if $y_t = 1$ then $x_s = 0$ and vice versa - Thus, $H(x_s | y_t) = 0 < 1 = H(x_s)$
- So information flowed from *x* to *y*

Entropy and Information Flow

- Idea: info flows from *x* to *y* as a result of a sequence of commands *c* if you can deduce information about *x* before *c* from the value in *y* after *c*
- Formally:
 - -s time before execution of c, t time after
 - $-H(x_s \mid y_t) < H(x_s \mid y_s)$
 - If no y at time s, then $H(x_s | y_t) < H(x_s)$

- Command is x := y + z; where:
 - $-0 \le y \le 7$, equal probability

-z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each

• *s* state before command executed; *t*, after; so

$$- H(y_s) = H(y_t) = -8(1/8) \lg (1/8) = 3$$

- $H(z_s) = H(z_t) = -(1/2) \lg (1/2) 2(1/4) \lg (1/4) = 1.5$
- If you know x_t , y_s can have at most 3 values, so $H(y_s | x_t) = -3(1/3) \lg (1/3) = \lg 3$

- Command is
 - if x = 1 then y := 0 else y := 1;

where:

-x, y equally likely to be either 0 or 1

- $H(x_s) = 1$ as x can be either 0 or 1 with equal probability
- $H(x_s | y_t) = 0$ as if $y_t = 1$ then $x_s = 0$ and vice versa - Thus, $H(x_s | y_t) = 0 < 1 = H(x_s)$
- So information flowed from *x* to *y*

Implicit Flow of Information

- Information flows from *x* to *y* without an *explicit* assignment of the form *y* := *f*(*x*)
 f(*x*) an arithmetic expression with variable *x*
- Example from previous slide:
 - **if** x = 1 **then** y := 0
 - **else** *y* := 1;
- So must look for implicit flows of information to analyze program

Notation

- \underline{x} means class of x
 - In Bell-LaPadula based system, same as "label of security compartment to which *x* belongs"
- $\underline{x} \le \underline{y}$ means "information can flow from an element in class of *x* to an element in class of *y*"
 - Or, "information with a label placing it in class \underline{x} can flow into class \underline{y} "

Information Flow Policies

Information flow policies are usually:

- reflexive
 - So information can flow freely among members of a single class
- transitive
 - So if information can flow from class 1 to class
 2, and from class 2 to class 3, then information
 can flow from class 1 to class 3

Non-Transitive Policies

- Betty is a confident of Anne
- Cathy is a confident of Betty
 - With transitivity, information flows from Anne to Betty to Cathy
- Anne confides to Betty she is having an affair with Cathy's spouse
 - Transitivity undesirable in this case, probably

Transitive Non-Lattice Policies

- 2 faculty members co-PIs on a grant
 - Equal authority; neither can overrule the other
- Grad students report to faculty members
- Undergrads report to grad students
- Information flow relation is:
 - Reflexive and transitive
- But some elements (people) have no "least upper bound" element
 - What is it for the faculty members?

Confidentiality Policy Model

- Lattice model fails in previous 2 cases
- Generalize: policy $I = (SC_I, \leq_I, join_I)$:
 - $-SC_I$ set of security classes
 - \leq_I ordering relation on elements of SC_I
 - *join*_I function to combine two elements of SC_I
- Example: Bell-LaPadula Model
 - $-SC_I$ set of security compartments
 - \leq_I ordering relation *dom*
 - *join*_I function *lub*

Confinement Flow Model

- $(I, O, confine, \rightarrow)$
 - $I = (SC_I, \leq_I, join_I)$
 - O set of entities
 - →: $O \times O$ with $(a, b) \in \rightarrow$ (written $a \rightarrow b$) iff information can flow from *a* to *b*
 - for $a \in O$, $confine(a) = (a_L, a_U) \in SC_I \times SC_I$ with $a_L \leq_I a_U$
 - Interpretation: for $a \in O$, if $x \leq_I a_U$, info can flow from *x* to *a*, and if $a_L \leq_I x$, info can flow from *a* to *x*
 - So a_L lowest classification of info allowed to flow out of a, and a_U highest classification of info allowed to flow into a

Assumptions, etc.

- Assumes: object can change security classes
 - So, variable can take on security class of its data
- Object x has security class \underline{x} currently
- Note transitivity *not* required
- If information can flow from *a* to *b*, then *b* dominates *a* under ordering of policy *I*: $(\forall a, b \in O)[a \rightarrow b \Rightarrow a_I \leq_I b_{II}]$

- $SC_I = \{ U, C, S, TS \}$, with $U \leq_I C, C \leq_I S$, and $S \leq_I TS$
- $a, b, c \in O$
 - $\operatorname{confine}(a) = [C, C]$
 - $\operatorname{confine}(b) = [S, S]$
 - $\operatorname{confine}(c) = [\operatorname{TS}, \operatorname{TS}]$
- Secure information flows: $a \rightarrow b, a \rightarrow c, b \rightarrow c$
 - $\operatorname{As} a_L \leq_I b_U, a_L \leq_I c_U, b_L \leq_I c_U$
 - Transitivity holds

- SC_I , \leq_I as in Example 1
- $x, y, z \in O$
 - $\operatorname{confine}(x) = [C, C]$
 - $\operatorname{confine}(y) = [S, S]$
 - $\operatorname{confine}(z) = [C, TS]$
- Secure information flows: $x \rightarrow y, x \rightarrow z, y \rightarrow z$,

 $z \to x, z \to y$

- $\operatorname{As} x_{L} \leq_{I} y_{U}, x_{L} \leq_{I} z_{U}, y_{L} \leq_{I} z_{U}, z_{L} \leq_{I} x_{U}, z_{L} \leq_{I} y_{U}$
- Transitivity does not hold
 - $y \rightarrow z$ and $z \rightarrow x$, but $y \rightarrow x$ is false, because $y_L \leq_I x_U$ is false

Transitive Non-Lattice Policies

- $Q = (S_Q, \leq_Q)$ is a *quasi-ordered set* when \leq_Q is transitive and reflexive over S_Q
- How to handle information flow?
 - Define a partially ordered set containing quasiordered set
 - Add least upper bound, greatest lower bound to partially ordered set
 - It's a lattice, so apply lattice rules!

In Detail ...

- $\forall x \in S_Q$: let $f(x) = \{ y \mid y \in S_Q \land y \leq_Q x \}$
 - Define $S_{QP} = \{ f(x) \mid x \in S_Q \}$
 - Define $\leq_{QP} = \{ (x, y) \mid x, y \in S_Q \land x \subseteq y \}$
 - S_{QP} partially ordered set under \leq_{QP}
 - f preserves order, so $y \leq_Q x$ iff $f(x) \leq_{QP} f(y)$
- Add upper, lower bounds
 - $S_{QP}{}' = S_{QP} \cup \{ S_Q, \emptyset \}$
 - Upper bound $ub(x, y) = \{ z \mid z \in S_{QP} \land x \subseteq z \land y \subseteq z \}$
 - Least upper bound $lub(x, y) = \cap ub(x, y)$
 - Lower bound, greatest lower bound defined analogously

And the Policy Is ...

- Now (S_{QP}', \leq_{QP}) is lattice
- Information flow policy on quasi-ordered set emulates that of this lattice!

Non-transitive Flow Policies

- Government agency information flow policy (on next slide)
- Entities public relations officers PRO, analysts A, spymasters S

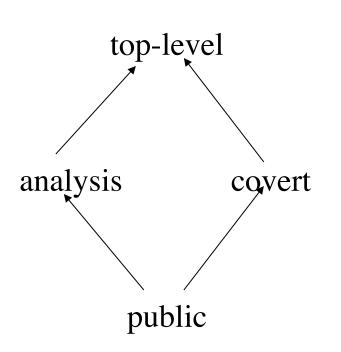
- confine(PRO) = { public, analysis }

- confine(A) = { analysis, top-level }

- confine(S) = { covert, top-level }

Information Flow

- By confinement flow model:
 - PRO \leq A, A \leq PRO
 - PRO \leq S
 - $-A \leq S, S \leq A$
- Data *cannot* flow to public relations officers; not transitive
 - $S \le A, A \le PRO$
 - $S \leq PRO \text{ is } false$



Transforming Into Lattice

- Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
 - Done so this set is partially ordered
 - Means it can be transformed into a lattice
- Can show this mapping preserves ordering relation
 - So it preserves non-orderings and non-transitivity of elements corresponding to those of original set

Dual Mapping

- $R = (SC_R, \leq_R, join_R)$ reflexive info flow policy
- $P = (S_P, \leq_P)$ ordered set
 - Define dual mapping functions l_R , h_R : $SC_R \rightarrow S_P$
 - $l_R(x) = \{ x \}$
 - $h_R(x) = \{ y \mid y \in SC_R \land y \leq_R x \}$
 - S_P contains subsets of SC_R ; \leq_P subset relation
 - Dual mapping function *order preserving* iff $(\forall a, b \in SC_R)[a \leq_R b \Leftrightarrow l_R(a) \leq_P h_R(b)]$

Theorem

Dual mapping from reflexive info flow policy *R* to ordered set *P* order-preserving *Proof sketch*: all notation as before (\Rightarrow) Let $a \leq_R b$. Then $a \in l_R(a), a \in h_R(b)$, so $l_R(a) \subseteq h_R(b)$, or $l_R(a) \leq_P h_R(b)$ (\Leftarrow) Let $l_R(a) \leq_P h_R(b)$. Then $l_R(a) \subseteq h_R(b)$. But $l_R(a) = \{a\}$, so $a \in h_R(b)$, giving $a \leq_R b$

Info Flow Requirements

- Interpretation: let $confine(x) = \{ \underline{x}_L, \underline{x}_U \},$ consider class \underline{y}
 - Information can flow from *x* to element of <u>y</u> iff $\underline{x}_L \leq_R \underline{y}$, or $l_R(\underline{x}_L) \subseteq h_R(\underline{y})$
 - Information can flow from element of \underline{y} to x iff $\underline{y} \leq_R \underline{x}_U$, or $l_R(\underline{y}) \subseteq h_R(\underline{x}_U)$

Revisit Government Example

- Information flow policy is R
- Flow relationships among classes are: public \leq_R public public \leq_R analysis public \leq_R analysis public \leq_R covert public \leq_R top-level analysis \leq_R top-level top-level \leq_R top-level

Dual Mapping of R

```
• Elements l_R, h_R:
      l_{R}(\text{public}) = \{ \text{ public } \}
     h_R(public = { public }
      l_R(\text{analysis}) = \{ \text{ analysis } \}
      h_{R}(\text{analysis}) = \{ \text{ public, analysis} \}
      l_R(\text{covert}) = \{ \text{ covert} \}
      h_{R}(\text{covert}) = \{ \text{ public, covert} \}
      l_R(\text{top-level}) = \{ \text{top-level} \}
      h_{R}(\text{top-level}) = \{ \text{ public, analysis, covert, top-level} \}
```

- Let *p* be entity of type PRO, *a* of type A, *s* of type S
- In terms of *P* (not *R*), we get:
 - confine(p) = [{ public }, { public, analysis }]
 - $confine(a) = [\{ analysis \},$

And the Flow Relations Are ...

•
$$p \rightarrow a$$
 as $l_R(p) \subseteq h_R(a)$
 $-l_R(p) = \{ \text{ public } \}$
 $-h_R(a) = \{ \text{ public, analysis, covert, top-level } \}$

- Similarly: $a \rightarrow p, p \rightarrow s, a \rightarrow s, s \rightarrow a$
- **But** $s \rightarrow p$ **is false** as $l_R(s) \not\subset h_R(p)$

$$-l_R(s) = \{ \text{ covert } \}$$

 $-h_R(p) = \{ \text{ public, analysis } \}$

Analysis

- (S_P, ≤_P) is a lattice, so it can be analyzed like a lattice policy
- Dual mapping preserves ordering, hence non-ordering and non-transitivity, of original policy
 - So results of analysis of (S_P, \leq_P) can be mapped back into $(SC_R, \leq_R, join_R)$

Compiler-Based Mechanisms

- Detect unauthorized information flows in a program during compilation
- Analysis not precise, but secure
 - If a flow *could* violate policy (but may not), it is unauthorized
 - No unauthorized path along which information could flow remains undetected
- Set of statements *certified* with respect to information flow policy if flows in set of statements do not violate that policy

Example

- **if** x = 1 **then** y := a;
- else y := b;
- Info flows from *x* and *a* to *y*, or from *x* and *b* to *y*
- Certified only if <u>x</u> ≤ <u>y</u> and <u>a</u> ≤ <u>y</u> and <u>b</u> ≤ <u>y</u>
 Note flows for *both* branches must be true unless compiler can determine that one branch will *never* be taken

Declarations

• Notation:

x: int class { A, B }

means x is an integer variable with security class at least $lub\{A, B\}$, so $lub\{A, B\} \le \underline{x}$

- Distinguished classes Low, High
 - Constants are always *Low*

Input Parameters

- Parameters through which data passed into procedure
- Class of parameter is class of actual argument

 i_p : type class { i_p }

Output Parameters

- Parameters through which data passed out of procedure
 - If data passed in, called "input/output parameter"
- As information can flow from input parameters to output parameters, class must include this:

 o_p : type class { r_1 , ..., r_n } where r_i is class of *i*th input or input/output argument

Example

- proc sum(x: int class { A }; var out: int class { A, B }); begin out := out + x; end;
- Require $\underline{x} \leq \underline{out}$ and $\underline{out} \leq \underline{out}$

Array Elements

• Information flowing out:

Value of *i*, a[i] both affect result, so class is $lub\{ \underline{a[i]}, \underline{i} \}$

• Information flowing in:

a[i] := . . .

• Only value of a[i] affected, so class is $\underline{a[i]}$

Assignment Statements

x := y + z;

• Information flows from y, z to x, so this requires $lub(\underline{y}, \underline{z}) \le \underline{x}$

More generally:

$$y := f(x_1, \ldots, x_n)$$

• the relation $lub(\underline{x}_1, ..., \underline{x}_n) \le \underline{y}$ must hold

Compound Statements

x := y + z; a := b * c - x;

- First statement: $lub(\underline{y}, \underline{z}) \leq \underline{x}$
- Second statement: $lub(\underline{b}, \underline{c}, \underline{x}) \leq \underline{a}$
- So, both must hold (i.e., be secure)

More generally:

$$S_1; . . . S_n;$$

• Each individual S_i must be secure

Conditional Statements

if x + y < z then a := b else d := b * c - x; end

• The statement executed reveals information about x, y, z, so $lub(\underline{x}, \underline{y}, \underline{z}) \le glb(\underline{a}, \underline{d})$

More generally:

if $f(x_1, \ldots, x_n)$ then S_1 else S_2 ; end

- S_1, S_2 must be secure
- $lub(\underline{x}_1, \dots, \underline{x}_n) \leq$

 $glb(\underline{y} | \underline{y} \text{ target of assignment in } S_1, S_2)$

Iterative Statements

while i < n do begin a[i] := b[i]; i := i + 1; end

• Same ideas as for "if", but must terminate

More generally:

```
while f(x_1, \ldots, x_n) do S;
```

- Loop must terminate;
- *S* must be secure
- $lub(\underline{x}_1, \dots, \underline{x}_n) \leq$

glb(<u>y</u> | y target of assignment in *S*)

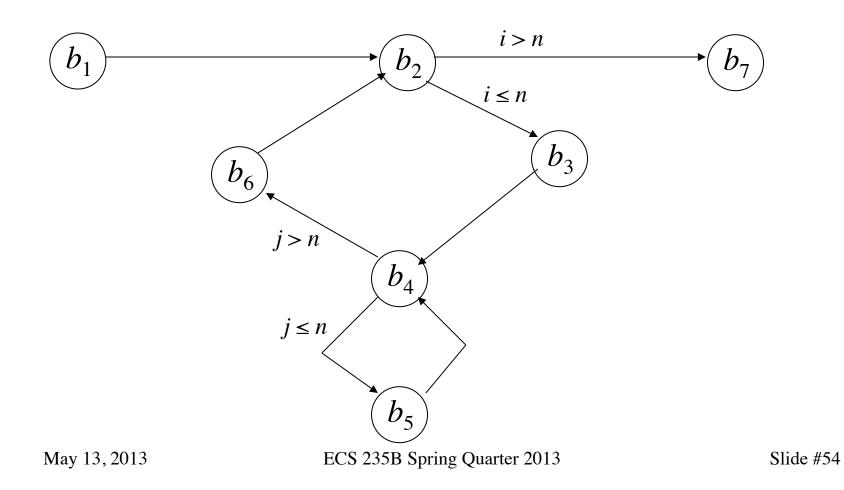
Goto Statements

- No assignments
 - Hence no explicit flows
- Need to detect implicit flows
- *Basic block* is sequence of statements that have one entry point and one exit point
 - Control in block *always* flows from entry point to exit point

Example Program

```
proc tm(x: array[1..10][1..10] of int class {x};
    var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
b_1 \ i := 1;
b_{2} L2: if i > 10 goto L7;
b_3 \ j := 1;
b_4 L4: if j > 10 then goto L6;
b_5 y[j][i] := x[i][j]; j := j + 1; \text{ goto } L4;
b_6 L6: i := i + 1; goto L2;
b<sub>7</sub> L7:
end;
```

Flow of Control



IFDs

- Idea: when two paths out of basic block, implicit flow occurs
 - Because information says *which* path to take
- When paths converge, either:
 - Implicit flow becomes irrelevant; or
 - Implicit flow becomes explicit
- *Immediate forward dominator* of basic block *b* (written IFD(*b*)) is first basic block lying on all paths of execution passing through *b*

IFD Example

- In previous procedure:
 - IFD $(b_1) = b_2$ one path

$$-$$
 IFD $(b_2) = b_7 \quad b_2 \rightarrow b_7 \text{ or } b_2 \rightarrow b_3 \rightarrow b_6 \rightarrow b_2 \rightarrow b_7$

- IFD $(b_3) = b_4$ one path

$$-$$
 IFD $(b_4) = b_6 \quad b_4 \rightarrow b_6 \text{ or } b_4 \rightarrow b_5 \rightarrow b_6$

- IFD $(b_5) = b_4$ one path
- IFD $(b_6) = b_2$ one path

Requirements

- B_i is set of basic blocks along an execution path from b_i to IFD (b_i)
 - Analogous to statements in conditional statement
- x_{i1}, \ldots, x_{in} variables in expression selecting which execution path containing basic blocks in B_i used
 - Analogous to conditional expression
- Requirements for secure:
 - All statements in each basic blocks are secure
 - $lub(\underline{x}_{i1}, \dots, \underline{x}_{in}) \le glb\{ \underline{y} \mid y \text{ target of assignment in } B_i \}$

Example of Requirements

• Within each basic block:

 $b_1: Low \leq \underline{i} \qquad b_3: Low \leq \underline{j} \qquad b_6: \operatorname{lub}\{Low, \underline{i}\} \leq \underline{i}$ $b_5: \operatorname{lub}(\underline{x[i][j]}, \underline{i}, \underline{j}) \leq \underline{y[j][i]}; \operatorname{lub}(Low, \underline{j}) \leq \underline{j}$

- Combining, $lub(\underline{x[i][j]}, \underline{i}, \underline{j}) \leq \underline{y[j][i]}$
- From declarations, true when $lub(\underline{x}, \underline{i}) \le \underline{y}$
- $B_2 = \{b_3, b_4, b_5, b_6\}$
 - Assignments to i, j, y[j][i]; conditional is $i \le 10$
 - Requires $\underline{i} \le glb(\underline{i}, \underline{j}, \underline{y[j][i]})$
 - From declarations, true when $\underline{i} \leq \underline{y}$

Example (continued)

- $B_4 = \{ b_5 \}$
 - Assignments to j, y[j][i]; conditional is $j \le 10$
 - Requires $\underline{j} \le glb(\underline{j}, \underline{y[j][i]})$
 - From declarations, means $\underline{i} \leq \underline{y}$
- Result:
 - Combine $lub(\underline{x}, \underline{i}) \le \underline{y}; \underline{i} \le \underline{y}; \underline{i} \le \underline{y}$
 - Requirement is $lub(\underline{x}, \underline{i}) \le \underline{y}$