Lecture 19

- Information flow
- Basics and background
 - Entropy
- Non-lattice flow policies
- Compiler-based mechanisms
Entropy

• Uncertainty of a value, as measured in bits
• Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
 – Therefore entropy of X is $H(X) = 1$
• Formal definition: random variable X, values x_1, \ldots, x_n; so $\sum_i p(X = x_i) = 1$
 $H(X) = -\sum_i p(X = x_i) \log p(X = x_i)$
Heads or Tails?

- \(H(X) = - p(X = \text{heads}) \log p(X = \text{heads}) \)
 - \(- p(X = \text{tails}) \log p(X = \text{tails}) \)

 \[= - (1/2) \log (1/2) - (1/2) \log (1/2) \]
 \[= - (1/2) (-1) - (1/2) (-1) = 1\]

- Confirms previous intuitive result
n-Sided Fair Die

\[H(X) = -\sum_i p(X = x_i) \lg p(X = x_i) \]

As $p(X = x_i) = 1/n$, this becomes

\[H(X) = -\sum_i (1/n) \lg (1/n) = -n(1/n) (-\lg n) \]

so

\[H(X) = \lg n \]

which is the number of bits in n, as expected
Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul

W represents the winner. What is its entropy?

- $w_1 = \text{Ann}, w_2 = \text{Pam}, w_3 = \text{Paul}$
- $p(W = w_1) = p(W = w_2) = 2/5, p(W = w_3) = 1/5$

- So $H(W) = -\sum_i p(W = w_i) \log p(W = w_i)$

 $= - \left(\frac{2}{5} \right) \log \left(\frac{2}{5} \right) - \left(\frac{2}{5} \right) \log \left(\frac{2}{5} \right) - \left(\frac{1}{5} \right) \log \left(\frac{1}{5} \right)$

 $= - \left(\frac{4}{5} \right) + \log 5 \approx 1.52$

- If all equally likely to win, $H(W) = \log 3 = 1.58$
Joint Entropy

- X takes values from $\{ x_1, \ldots, x_n \}$
 - $\Sigma_i p(X = x_i) = 1$
- Y takes values from $\{ y_1, \ldots, y_m \}$
 - $\Sigma_i p(Y = y_i) = 1$
- Joint entropy of X, Y is:
 - $H(X, Y) = -\Sigma_j \Sigma_i p(X=x_i, Y=y_j) \log p(X=x_i, Y=y_j)$
Example

X: roll of fair die, Y: flip of coin

$p(X=1, Y=\text{heads}) = p(X=1) p(Y=\text{heads}) = 1/12$

– As X and Y are independent

$H(X, Y) = -\sum_j \sum_i p(X=x_i, Y=y_j) \log p(X=x_i, Y=y_j)$

$= -2 \left[6 \left[(1/12) \log (1/12) \right] \right] = \log 12$
Conditional Entropy

• X takes values from \{ x_1, \ldots, x_n \}
 \[\sum_i p(X=x_i) = 1 \]
• Y takes values from \{ y_1, \ldots, y_m \}
 \[\sum_i p(Y=y_i) = 1 \]
• Conditional entropy of X given $Y=y_j$ is:
 \[H(X \mid Y=y_j) = -\sum_i p(X=x_i \mid Y=y_j) \log p(X=x_i \mid Y=y_j) \]
• Conditional entropy of X given Y is:
 \[H(X \mid Y) = -\sum_j p(Y=y_j) \sum_i p(X=x_i \mid Y=y_j) \log p(X=x_i \mid Y=y_j) \]
Example

- X roll of red die, Y sum of red, blue roll
- Note $p(X=1 \mid Y=2) = 1$, $p(X=i \mid Y=2) = 0$ for $i \neq 1$
 - If the sum of the rolls is 2, both dice were 1
- $H(X \mid Y=2) = -\sum_i p(X=x_i \mid Y=2) \log p(X=x_i \mid Y=2) = 0$
- Note $p(X=i, Y=7) = 1/6$
 - If the sum of the rolls is 7, the red die can be any of 1, ..., 6 and the blue die must be 7–roll of red die
- $H(X \mid Y=7) = -\sum_i p(X=x_i \mid Y=7) \log p(X=x_i \mid Y=7)$
 $= -6 \cdot (1/6) \log (1/6) = \log 6$
Perfect Secrecy

• Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
• \(M = \{ m_1, \ldots, m_n \} \) set of messages
• \(C = \{ c_1, \ldots, c_n \} \) set of messages
• Cipher \(c_i = E(m_i) \) achieves perfect secrecy if \(H(M \mid C) = H(M) \)
Entropy and Information Flow

• Idea: info flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c

• Formally:
 – s time before execution of c, t time after
 – $H(x_s \mid y_t) < H(x_s \mid y_s)$
 – If no y at time s, then $H(x_s \mid y_t) < H(x_s)$
Example 1

- Command is $x := y + z$; where:
 - $0 \leq y \leq 7$, equal probability
 - $z = 1$ with prob. $1/2$, $z = 2$ or 3 with prob. $1/4$ each

- s state before command executed; t, after; so
 - $H(y_s) = H(y_t) = -8(1/8) \lg (1/8) = 3$
 - $H(z_s) = H(z_t) = -(1/2) \lg (1/2) - 2(1/4) \lg (1/4) = 1.5$

- If you know x_t, y_s can have at most 3 values, so
 $H(y_s \mid x_t) = -3(1/3) \lg (1/3) = \lg 3$
Example 2

- Command is
 - if $x = 1$ then $y := 0$ else $y := 1$;

where:
 - x, y equally likely to be either 0 or 1
- $H(x_s) = 1$ as x can be either 0 or 1 with equal probability
- $H(x_s | y_t) = 0$ as if $y_t = 1$ then $x_s = 0$ and vice versa
 - Thus, $H(x_s | y_t) = 0 < 1 = H(x_s)$
- So information flowed from x to y
Entropy and Information Flow

• Idea: info flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c

• Formally:
 – s time before execution of c, t time after
 – $H(x_s \mid y_t) < H(x_s \mid y_s)$
 – If no y at time s, then $H(x_s \mid y_t) < H(x_s)$
Example 1

- Command is $x := y + z$; where:
 - $0 \leq y \leq 7$, equal probability
 - $z = 1$ with prob. $1/2$, $z = 2$ or 3 with prob. $1/4$ each
- s state before command executed; t, after; so
 - $H(y_s) = H(y_t) = -8(1/8) \log_2 (1/8) = 3$
 - $H(z_s) = H(z_t) = -(1/2) \log_2 (1/2) -2(1/4) \log_2 (1/4) = 1.5$
- If you know x_t, y_s can have at most 3 values, so
 $H(y_s \mid x_t) = -3(1/3) \log_2 (1/3) = \log_2 3$
Example 2

• Command is
 – \textbf{if} \(x = 1 \) \textbf{then} \(y := 0 \) \textbf{else} \(y := 1 \);

where:
 – \(x, y \) equally likely to be either 0 or 1

• \(H(x_s) = 1 \) as \(x \) can be either 0 or 1 with equal probability

• \(H(x_s \mid y_t) = 0 \) as if \(y_t = 1 \) then \(x_s = 0 \) and vice versa
 – Thus, \(H(x_s \mid y_t) = 0 < 1 = H(x_s) \)

• So information flowed from \(x \) to \(y \)
Implicit Flow of Information

- Information flows from x to y without an explicit assignment of the form $y := f(x)$
 - $f(x)$ an arithmetic expression with variable x
- Example from previous slide:
 - if $x = 1$ then $y := 0$
 else $y := 1$;
- So must look for implicit flows of information to analyze program
Notation

• $_x$ means class of x
 – In Bell-LaPadula based system, same as “label of security compartment to which x belongs”

• $x \leq y$ means “information can flow from an element in class of x to an element in class of y”
 – Or, “information with a label placing it in class x can flow into class y”
Information Flow Policies

Information flow policies are usually:

• reflexive
 – So information can flow freely among members of a single class

• transitive
 – So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3
Non-Transitive Policies

• Betty is a confident of Anne
• Cathy is a confident of Betty
 – With transitivity, information flows from Anne to Betty to Cathy
• Anne confides to Betty she is having an affair with Cathy’s spouse
 – Transitivity undesirable in this case, probably
Transitive Non-Lattice Policies

- 2 faculty members co-PIs on a grant
 - Equal authority; neither can overrule the other
- Grad students report to faculty members
- Undergrads report to grad students
- Information flow relation is:
 - Reflexive and transitive
- But some elements (people) have no “least upper bound” element
 - What is it for the faculty members?
Confidentiality Policy Model

- Lattice model fails in previous 2 cases
- Generalize: policy $I = (SC_I, \leq_I, \text{join}_I)$:
 - SC_I set of security classes
 - \leq_I ordering relation on elements of SC_I
 - join_I function to combine two elements of SC_I
- Example: Bell-LaPadula Model
 - SC_I set of security compartments
 - \leq_I ordering relation dom
 - join_I function lub
Confinement Flow Model

- \((I, O, \text{confine}, \rightarrow)\)
 - \(I = (SC_I, \leq_I, \text{join}_I)\)
 - \(O\) set of entities
 - \(\rightarrow: O \times O\) with \((a, b) \in \rightarrow\) (written \(a \rightarrow b\)) iff information can flow from \(a\) to \(b\)
 - for \(a \in O\), \(\text{confine}(a) = (a_L, a_U) \in SC_I \times SC_I\) with \(a_L \leq_I a_U\)
 - Interpretation: for \(a \in O\), if \(x \leq_I a_U\), info can flow from \(x\) to \(a\), and if \(a_L \leq_I x\), info can flow from \(a\) to \(x\)
 - So \(a_L\) lowest classification of info allowed to flow out of \(a\), and \(a_U\) highest classification of info allowed to flow into \(a\)
• Assumes: object can change security classes
 – So, variable can take on security class of its data
• Object \(x \) has security class \(x \) currently
• Note transitivity *not* required
• If information can flow from \(a \) to \(b \), then \(b \) dominates \(a \) under ordering of policy \(I \):
 \[
 (\forall a, b \in O)[a \rightarrow b \Rightarrow a_L \leq_I b_U]
 \]
Example 1

- $SC_I = \{ U, C, S, TS \}$, with $U \leq_I C$, $C \leq_I S$, and $S \leq_I TS$
- a, b, $c \in O$
 - $\text{confine}(a) = [C, C]$
 - $\text{confine}(b) = [S, S]$
 - $\text{confine}(c) = [TS, TS]$
- Secure information flows: $a \rightarrow b$, $a \rightarrow c$, $b \rightarrow c$
 - As $a_L \leq_I b_U$, $a_L \leq_I c_U$, $b_L \leq_I c_U$
 - Transitivity holds
Example 2

- SC_I, \leq_I as in Example 1
- $x, y, z \in O$
 - $\text{confine}(x) = [C, C]$
 - $\text{confine}(y) = [S, S]$
 - $\text{confine}(z) = [C, TS]$
- Secure information flows: $x \rightarrow y$, $x \rightarrow z$, $y \rightarrow z$, $z \rightarrow x$, $z \rightarrow y$
 - As $x_L \leq_I y_U$, $x_L \leq_I z_U$, $y_L \leq_I z_U$, $z_L \leq_I x_U$, $z_L \leq_I y_U$
 - Transitivity does not hold
 - $y \rightarrow z$ and $z \rightarrow x$, but $y \rightarrow x$ is false, because $y_L \leq_I x_U$ is false
Transitive Non-Lattice Policies

• $Q = (S_Q, \leq_Q)$ is a quasi-ordered set when \leq_Q is transitive and reflexive over S_Q

• How to handle information flow?
 – Define a partially ordered set containing quasi-ordered set
 – Add least upper bound, greatest lower bound to partially ordered set
 – It’s a lattice, so apply lattice rules!
In Detail …

- $\forall x \in S_Q$: let $f(x) = \{ y \mid y \in S_Q \land y \leq_Q x \}$
 - Define $S_{QP} = \{ f(x) \mid x \in S_Q \}$
 - Define $\leq_{QP} = \{ (x, y) \mid x, y \in S_Q \land x \subseteq y \}$
 - S_{QP} partially ordered set under \leq_{QP}
 - f preserves order, so $y \leq_Q x$ iff $f(x) \leq_{QP} f(y)$

- Add upper, lower bounds
 - $S_{QP}' = S_{QP} \cup \{ S_Q, \emptyset \}$
 - Upper bound $ub(x, y) = \{ z \mid z \in S_{QP} \land x \subseteq z \land y \subseteq z \}$
 - Least upper bound $lub(x, y) = \cap ub(x, y)$
 - Lower bound, greatest lower bound defined analogously
And the Policy Is …

- Now \((S_{QP}', \leq_{QP})\) is lattice
- Information flow policy on quasi-ordered set emulates that of this lattice!
Non-transitive Flow Policies

• Government agency information flow policy (on next slide)

• Entities public relations officers PRO, analysts A, spymasters S
 – $\text{confine}(\text{PRO}) = \{ \text{public, analysis} \}$
 – $\text{confine}(A) = \{ \text{analysis, top-level} \}$
 – $\text{confine}(S) = \{ \text{covert, top-level} \}$
Information Flow

- By confinement flow model:
 - \(\text{PRO} \leq A, A \leq \text{PRO} \)
 - \(\text{PRO} \leq S \)
 - \(A \leq S, S \leq A \)

- Data cannot flow to public relations officers; not transitive
 - \(S \leq A, A \leq \text{PRO} \)
 - \(S \leq \text{PRO} \) is false
Transforming Into Lattice

• Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
 – Done so this set is partially ordered
 – Means it can be transformed into a lattice

• Can show this mapping preserves ordering relation
 – So it preserves non-orderings and non-transitivity of elements corresponding to those of original set
Dual Mapping

- $R = (SC_R, \leq_R, join_R)$ reflexive info flow policy
- $P = (S_P, \leq_P)$ ordered set
 - Define dual mapping functions $l_R, h_R: SC_R \rightarrow S_P$
 - $l_R(x) = \{ x \}$
 - $h_R(x) = \{ y \mid y \in SC_R \land y \leq_R x \}$
 - S_P contains subsets of SC_R; \leq_P subset relation
 - Dual mapping function order preserving iff
 $$(\forall a, b \in SC_R)[a \leq_R b \iff l_R(a) \leq_P h_R(b)]$$
Theorem

Dual mapping from reflexive info flow policy R to ordered set P order-preserving

Proof sketch: all notation as before

(\Rightarrow) Let $a \leq_R b$. Then $a \in l_R(a)$, $a \in h_R(b)$, so
\[l_R(a) \subseteq h_R(b), \text{ or } l_R(a) \leq_P h_R(b) \]

(\Leftarrow) Let $l_R(a) \leq_P h_R(b)$. Then $l_R(a) \subseteq h_R(b)$.
But $l_R(a) = \{ a \}$, so $a \in h_R(b)$, giving $a \leq_R b$
Info Flow Requirements

- Interpretation: let $\text{confine}(x) = \{ x_L, x_U \}$, consider class \mathcal{Y}
 - Information can flow from x to element of \mathcal{Y} iff $x_L \leq_R \mathcal{Y}$, or $l_R(x_L) \subseteq h_R(\mathcal{Y})$
 - Information can flow from element of \mathcal{Y} to x iff $\mathcal{Y} \leq_R x_U$, or $l_R(\mathcal{Y}) \subseteq h_R(x_U)$
Revisit Government Example

- Information flow policy is R
- Flow relationships among classes are:

 $\text{public} \leq_R \text{public}$

 $\text{public} \leq_R \text{analysis}$
 $\text{analysis} \leq_R \text{analysis}$

 $\text{public} \leq_R \text{covert}$
 $\text{covert} \leq_R \text{covert}$

 $\text{public} \leq_R \text{top-level}$
 $\text{covert} \leq_R \text{top-level}$
 $\text{analysis} \leq_R \text{top-level}$
 $\text{top-level} \leq_R \text{top-level}$
Dual Mapping of R

- Elements l_R, h_R:

 $l_R(\text{public}) = \{ \text{public} \}$

 $h_R(\text{public}) = \{ \text{public} \}$

 $l_R(\text{analysis}) = \{ \text{analysis} \}$

 $h_R(\text{analysis}) = \{ \text{public, analysis} \}$

 $l_R(\text{covert}) = \{ \text{covert} \}$

 $h_R(\text{covert}) = \{ \text{public, covert} \}$

 $l_R(\text{top-level}) = \{ \text{top-level} \}$

 $h_R(\text{top-level}) = \{ \text{public, analysis, covert, top-level} \}$
confine

- Let p be entity of type PRO, a of type A, s of type S
- In terms of P (not R), we get:
 - $\text{confine}(p) = \{ \{ \text{public} \}, \{ \text{public, analysis} \} \}$
 - $\text{confine}(a) = \{ \{ \text{analysis} \}, \{ \text{public, analysis, covert, top-level} \} \}$
 - $\text{confine}(s) = \{ \{ \text{covert} \}, \{ \text{public, analysis, covert, top-level} \} \}$
And the Flow Relations Are …

- \(p \to a \) as \(l_R(p) \subseteq h_R(a) \)
 - \(l_R(p) = \{ \text{public} \} \)
 - \(h_R(a) = \{ \text{public, analysis, covert, top-level} \} \)

- Similarly: \(a \to p, p \to s, a \to s, s \to a \)

- **But** \(s \to p \) is false as \(l_R(s) \not\subseteq h_R(p) \)
 - \(l_R(s) = \{ \text{covert} \} \)
 - \(h_R(p) = \{ \text{public, analysis} \} \)
Analysis

• \((S_P, \leq_P) \) is a lattice, so it can be analyzed like a lattice policy

• Dual mapping preserves ordering, hence non-ordering and non-transitivity, of original policy
 – So results of analysis of \((S_P, \leq_P) \) can be mapped back into \((SC_R, \leq_R, join_R) \)
Compiler-Based Mechanisms

- Detect unauthorized information flows in a program during compilation
- Analysis not precise, but secure
 - If a flow could violate policy (but may not), it is unauthorized
 - No unauthorized path along which information could flow remains undetected
- Set of statements certified with respect to information flow policy if flows in set of statements do not violate that policy
Example

\begin{verbatim}
if \(x = 1 \) then \(y := a; \)
else \(y := b; \)
\end{verbatim}

- Info flows from \(x \) and \(a \) to \(y \), or from \(x \) and \(b \) to \(y \)
- Certified only if \(x \leq y \) and \(a \leq y \) and \(b \leq y \)
 - Note flows for both branches must be true unless compiler can determine that one branch will never be taken
Declarations

• Notation:

\[x: \text{int class } \{ A, B \} \]

means \(x \) is an integer variable with security class at least \(\text{lub}\{ A, B \} \), so \(\text{lub}\{ A, B \} \leq x \)

• Distinguished classes \(Low, High \)
 – Constants are always \(Low \)
Input Parameters

- Parameters through which data passed into procedure
- Class of parameter is class of actual argument

\[i_p : \text{type class} \{ i_p \} \]
Output Parameters

- Parameters through which data passed out of procedure
 - If data passed in, called “input/output parameter”
- As information can flow from input parameters to output parameters, class must include this:
 \[o_p: \text{type class} \{ r_1, \ldots, r_n \} \]
 where \(r_i \) is class of \(i \)th input or input/output argument
Example

```
proc sum(x: int class { A };
    var out: int class { A, B });
begin
    out := out + x;
end;
• Require $x \leq \text{out}$ and $\text{out} \leq \text{out}$
```
Array Elements

• Information flowing out:
 \[\ldots := a[i] \]
 Value of \(i \), \(a[i] \) both affect result, so class is \(\text{lub}\{ a[i], i \} \)

• Information flowing in:
 \[a[i] := \ldots \]
 Only value of \(a[i] \) affected, so class is \(a[i] \)
Assignment Statements

\[x := y + z; \]

- Information flows from \(y, z \) to \(x \), so this requires \(\text{lub}(y, z) \leq x \)

More generally:

\[y := f(x_1, \ldots, x_n) \]

- the relation \(\text{lub}(x_1, \ldots, x_n) \leq y \) must hold
Compound Statements

\[x := y + z; \quad a := b * c - x; \]

- First statement: \(\text{lub}(y, z) \leq x \)
- Second statement: \(\text{lub}(b, c, x) \leq a \)
- So, both must hold (i.e., be secure)

More generally:

\[S_1; \cdots ; S_n; \]

- Each individual \(S_i \) must be secure
Conditional Statements

if \(x + y < z \) then \(a := b \) else \(d := b \cdot c - x \); end

• The statement executed reveals information about \(x, y, z \), so \(lub(x, y, z) \leq glb(a, d) \)

More generally:

if \(f(x_1, \ldots, x_n) \) then \(S_1 \) else \(S_2 \); end

• \(S_1, S_2 \) must be secure

• \(lub(x_1, \ldots, x_n) \leq glb(y \mid y \text{ target of assignment in } S_1, S_2) \)
Iterative Statements

while $i < n$ do begin $a[i] := b[i]$; $i := i + 1$; end

- Same ideas as for "if", but must terminate

More generally:

```plaintext
while $f(x_1, \ldots, x_n)$ do $S$
```

- Loop must terminate;
- S must be secure
- $lub(x_1, \ldots, x_n) \leq$ $glb(y | y \text{ target of assignment in } S)$
Goto Statements

• No assignments
 – Hence no explicit flows
• Need to detect implicit flows
• Basic block is sequence of statements that have one entry point and one exit point
 – Control in block always flows from entry point to exit point
Example Program

proc tm(x: array[1..10][1..10] of int class {x});
 var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
 b1 i := 1;
 b2 L2: if i > 10 goto L7;
 b3 j := 1;
 b4 L4: if j > 10 then goto L6;
 b5 y[j][i] := x[i][j]; j := j + 1; goto L4;
 b6 L6: i := i + 1; goto L2;
 b7 L7:
end;

May 13, 2013 ECS 235B Spring Quarter 2013 Slide #53
IFDs

• Idea: when two paths out of basic block, implicit flow occurs
 – Because information says *which* path to take
• When paths converge, either:
 – Implicit flow becomes irrelevant; or
 – Implicit flow becomes explicit
• *Immediate forward dominator* of basic block *b* (written IFD(b)) is first basic block lying on all paths of execution passing through *b*
IFD Example

• In previous procedure:
 – IFD(b_1) = b_2 one path
 – IFD(b_2) = b_7 $b_2 \rightarrow b_7$ or $b_2 \rightarrow b_3 \rightarrow b_6 \rightarrow b_2 \rightarrow b_7$
 – IFD(b_3) = b_4 one path
 – IFD(b_4) = b_6 $b_4 \rightarrow b_6$ or $b_4 \rightarrow b_5 \rightarrow b_6$
 – IFD(b_5) = b_4 one path
 – IFD(b_6) = b_2 one path
Requirements

• B_i is set of basic blocks along an execution path from b_i to IFD(b_i)
 – Analogous to statements in conditional statement

• x_{i1}, \ldots, x_{in} variables in expression selecting which execution path containing basic blocks in B_i used
 – Analogous to conditional expression

• Requirements for secure:
 – All statements in each basic blocks are secure
 – $lub(x_{i1}, \ldots, x_{in}) \leq glb\{y \mid y\text{ target of assignment in } B_i\}$
Example of Requirements

• Within each basic block:

\[b_1: \text{Low} \leq i \quad b_3: \text{Low} \leq j \quad b_6: \text{lub}\{\text{Low}, i\} \leq i \]

\[b_5: \text{lub}(x[i][j], i, j) \leq y[j][i]; \text{lub}(\text{Low}, j) \leq j \]

– Combining, \(\text{lub}(x[i][j], i, j) \leq y[j][i] \)

– From declarations, true when \(\text{lub}(x, i) \leq y \)

• \(B_2 = \{b_3, b_4, b_5, b_6\} \)

 – Assignments to \(i, j, y[j][i] \); conditional is \(i \leq 10 \)

 – Requires \(i \leq \text{glb}(i, j, y[j][i]) \)

 – From declarations, true when \(i \leq y \)
Example (continued)

• $B_4 = \{ b_5 \}$
 – Assignments to $j, y[j][i]$; conditional is $j \leq 10$
 – Requires $j \leq \text{glb}(j, y[j][i])$
 – From declarations, means $i \leq y$

• Result:
 – Combine $\text{lub}(x, i) \leq y; i \leq y; i \leq y$
 – Requirement is $\text{lub}(x, i) \leq y$