
Lecture 19	

•  Information flow	

•  Basics and background	

– Entropy	

•  Non-lattice flow policies	

•  Compiler-based mechanisms	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #1	

Entropy	

•  Uncertainty of a value, as measured in bits	

•  Example: X value of fair coin toss; X could

be heads or tails, so 1 bit of uncertainty	

– Therefore entropy of X is H(X) = 1	

•  Formal definition: random variable X,
values x1, …, xn; so Σi p(X = xi) = 1	

	

H(X) = –Σi p(X = xi) lg p(X = xi)	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #2	

Heads or Tails?	

•  H(X) = 	

– p(X = heads) lg p(X = heads)	

	

 	

 	

– p(X = tails) lg p(X = tails)	

	

 	

 = 	

– (1/2) lg (1/2) – (1/2) lg (1/2)	

	

 	

 = – (1/2) (–1) – (1/2) (–1) = 1	

•  Confirms previous intuitive result 	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #3	

n-Sided Fair Die	

H(X) = –Σi p(X = xi) lg p(X = xi)	

As p(X = xi) = 1/n, this becomes	

H(X) = –Σi (1/n) lg (1/ n) = –n(1/n) (–lg n)	

so	

H(X) = lg n	

which is the number of bits in n, as expected	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #4	

Ann, Pam, and Paul	

Ann, Pam twice as likely to win as Paul	

W represents the winner. What is its entropy?	

–  w1 = Ann, w2 = Pam, w3 = Paul	

–  p(W= w1) = p(W= w2) = 2/5, p(W= w3) = 1/5	

•  So H(W) = –Σi p(W = wi) lg p(W = wi)	

	

= – (2/5) lg (2/5) – (2/5) lg (2/5) – (1/5) lg (1/5)	

	

= – (4/5) + lg 5 ≈ 1.52	

•  If all equally likely to win, H(W) = lg 3 = 1.58	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #5	

Joint Entropy	

•  X takes values from { x1, …, xn }	

– Σi p(X = xi) = 1	

•  Y takes values from { y1, …, ym }	

– Σi p(Y = yi) = 1	

•  Joint entropy of X, Y is:	

– H(X, Y) = –Σj Σi p(X=xi, Y=yj) lg p(X=xi, Y=yj)	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #6	

Example	

X: roll of fair die, Y: flip of coin	

p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12	

– As X and Y are independent	

H(X, Y) = –Σj Σi p(X=xi, Y=yj) lg p(X=xi, Y=yj)	

 = –2 [6 [(1/12) lg (1/12)]] = lg 12	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #7	

Conditional Entropy	

•  X takes values from { x1, …, xn }	

–  Σi p(X=xi) = 1	

•  Y takes values from { y1, …, ym }	

–  Σi p(Y=yi) = 1	

•  Conditional entropy of X given Y=yj is:	

–  H(X | Y=yj) = –Σi p(X=xi | Y=yj) lg p(X=xi | Y=yj)	

•  Conditional entropy of X given Y is:	

–  H(X | Y) = –Σj p(Y=yj) Σi p(X=xi | Y=yj) lg p(X=xi | Y=yj)	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #8	

Example	

•  X roll of red die, Y sum of red, blue roll	

•  Note p(X=1 | Y=2) = 1, p(X=i | Y=2) = 0 for i ≠ 1	

–  If the sum of the rolls is 2, both dice were 1	

•  H(X|Y=2) = –Σi p(X=xi | Y=2) lg p(X=xi | Y=2) = 0	

•  Note p(X=i , Y=7) = 1/6	

–  If the sum of the rolls is 7, the red die can be any of 1,
…, 6 and the blue die must be 7–roll of red die	

•  H(X|Y=7) = –Σi p(X=xi | Y=7) lg p(X=xi | Y=7)	

 = –6 (1/6) lg (1/6) = lg 6	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #9	

Perfect Secrecy	

•  Cryptography: knowing the ciphertext does
not decrease the uncertainty of the plaintext	

•  M = { m1, …, mn } set of messages	

•  C = { c1, …, cn } set of messages	

•  Cipher ci = E(mi) achieves perfect secrecy if

H(M | C) = H(M)	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #10	

Entropy and Information Flow	

•  Idea: info flows from x to y as a result of a
sequence of commands c if you can deduce
information about x before c from the value
in y after c	

•  Formally:	

–  s time before execution of c, t time after	

– H(xs | yt) < H(xs | ys)	

–  If no y at time s, then H(xs | yt) < H(xs)	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #11	

Example 1	

•  Command is x := y + z; where:	

–  0 ≤ y ≤ 7, equal probability	

–  z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each	

•  s state before command executed; t, after; so	

–  H(ys) = H(yt) = –8(1/8) lg (1/8) = 3	

–  H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5	

•  If you know xt, ys can have at most 3 values, so
H(ys | xt) = –3(1/3) lg (1/3) = lg 3	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #12	

Example 2	

•  Command is	

–  if x = 1 then y := 0 else y := 1;	

	

where:	

–  x, y equally likely to be either 0 or 1	

•  H(xs) = 1 as x can be either 0 or 1 with equal

probability	

•  H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa	

–  Thus, H(xs | yt) = 0 < 1 = H(xs)	

•  So information flowed from x to y	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #13	

Entropy and Information Flow	

•  Idea: info flows from x to y as a result of a
sequence of commands c if you can deduce
information about x before c from the value
in y after c	

•  Formally:	

–  s time before execution of c, t time after	

– H(xs | yt) < H(xs | ys)	

–  If no y at time s, then H(xs | yt) < H(xs)	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #14	

Example 1	

•  Command is x := y + z; where:	

–  0 ≤ y ≤ 7, equal probability	

–  z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each	

•  s state before command executed; t, after; so	

–  H(ys) = H(yt) = –8(1/8) lg (1/8) = 3	

–  H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5	

•  If you know xt, ys can have at most 3 values, so
H(ys | xt) = –3(1/3) lg (1/3) = lg 3	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #15	

Example 2	

•  Command is	

–  if x = 1 then y := 0 else y := 1;	

	

where:	

–  x, y equally likely to be either 0 or 1	

•  H(xs) = 1 as x can be either 0 or 1 with equal

probability	

•  H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa	

–  Thus, H(xs | yt) = 0 < 1 = H(xs)	

•  So information flowed from x to y	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #16	

Implicit Flow of Information	

•  Information flows from x to y without an
explicit assignment of the form y := f(x)	

–  f(x) an arithmetic expression with variable x	

•  Example from previous slide:	

–  if x = 1 then y := 0	

	

else y := 1;	

•  So must look for implicit flows of
information to analyze program	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #17	

Notation	

•  x means class of x	

–  In Bell-LaPadula based system, same as “label

of security compartment to which x belongs”	

•  x ≤ y means “information can flow from an

element in class of x to an element in class
of y”	

– Or, “information with a label placing it in class

x can flow into class y”	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #18	

Information Flow Policies	

Information flow policies are usually:	

•  reflexive	

– So information can flow freely among members
of a single class	

•  transitive	

– So if information can flow from class 1 to class

2, and from class 2 to class 3, then information
can flow from class 1 to class 3	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #19	

Non-Transitive Policies	

•  Betty is a confident of Anne	

•  Cathy is a confident of Betty	

– With transitivity, information flows from Anne
to Betty to Cathy	

•  Anne confides to Betty she is having an
affair with Cathy’s spouse	

– Transitivity undesirable in this case, probably	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #20	

Transitive Non-Lattice Policies	

•  2 faculty members co-PIs on a grant	

–  Equal authority; neither can overrule the other	

•  Grad students report to faculty members	

•  Undergrads report to grad students	

•  Information flow relation is:	

–  Reflexive and transitive	

•  But some elements (people) have no “least upper

bound” element	

–  What is it for the faculty members?	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #21	

Confidentiality Policy Model	

•  Lattice model fails in previous 2 cases	

•  Generalize: policy I = (SCI, ≤I, joinI):	

–  SCI set of security classes	

–  ≤I ordering relation on elements of SCI	

–  joinI function to combine two elements of SCI	

	

•  Example: Bell-LaPadula Model	

–  SCI set of security compartments	

–  ≤I ordering relation dom	

–  joinI function lub	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #22	

Confinement Flow Model	

•  (I, O, confine, →)	

–  I = (SCI, ≤I, joinI)	

–  O set of entities	

–  →: O×O with (a, b) ∈ → (written a → b) iff

information can flow from a to b	

–  for a ∈ O, confine(a) = (aL, aU) ∈ SCI×SCI with aL ≤I aU	

•  Interpretation: for a ∈ O, if x ≤I aU, info can flow from x to a,
and if aL ≤I x, info can flow from a to x	

•  So aL lowest classification of info allowed to flow out of a, and
aU highest classification of info allowed to flow into a 	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #23	

Assumptions, etc.	

•  Assumes: object can change security classes	

– So, variable can take on security class of its

data	

•  Object x has security class x currently	

•  Note transitivity not required	

•  If information can flow from a to b, then b

dominates a under ordering of policy I:	

(∀ a, b ∈ O)[a → b ⇒ aL ≤I bU]	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #24	

Example 1	

•  SCI = { U, C, S, TS }, with U ≤I C, C ≤I S, and

S ≤I TS	

•  a, b, c ∈ O	

–  confine(a) = [C, C]	

–  confine(b) = [S, S]	

–  confine(c) = [TS, TS]	

•  Secure information flows: a → b, a → c, b → c	

–  As aL ≤I bU, aL ≤I cU, bL ≤I cU	

–  Transitivity holds	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #25	

Example 2	

•  SCI, ≤I as in Example 1	

•  x, y, z ∈ O	

–  confine(x) = [C, C]	

–  confine(y) = [S, S]	

–  confine(z) = [C, TS]	

•  Secure information flows: x → y, x → z, y → z,
z → x, z → y	

–  As xL ≤I yU, xL ≤I zU, yL ≤I zU, zL ≤I xU, zL ≤I yU	

–  Transitivity does not hold	

•  y → z and z → x, but y → x is false, because yL ≤I xU is false	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #26	

Transitive Non-Lattice Policies	

•  Q = (SQ, ≤Q) is a quasi-ordered set when ≤Q
is transitive and reflexive over SQ	

•  How to handle information flow?	

– Define a partially ordered set containing quasi-

ordered set	

– Add least upper bound, greatest lower bound to

partially ordered set	

–  It’s a lattice, so apply lattice rules!	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #27	

In Detail …	

•  ∀x ∈ SQ: let f(x) = { y | y ∈ SQ ∧ y ≤Q x }	

–  Define SQP = { f(x) | x ∈ SQ }	

–  Define ≤QP = { (x, y) | x, y ∈ SQ ∧ x ⊆ y }	

•  SQP partially ordered set under ≤QP 	

•  f preserves order, so y ≤Q x iff f(x) ≤QP f(y)	

•  Add upper, lower bounds	

–  SQPʹ′ = SQP ∪ { SQ, ∅ }	

–  Upper bound ub(x, y) = { z | z ∈ SQP ∧ x ⊆ z ∧ y ⊆ z }	

–  Least upper bound lub(x, y) = ∩ub(x, y)	

•  Lower bound, greatest lower bound defined analogously	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #28	

And the Policy Is …	

•  Now (SQPʹ′, ≤QP) is lattice	

•  Information flow policy on quasi-ordered

set emulates that of this lattice!	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #29	

Non-transitive Flow Policies	

•  Government agency information flow policy
(on next slide)	

•  Entities public relations officers PRO,
analysts A, spymasters S	

–  confine(PRO) = { public, analysis }	

–  confine(A) = { analysis, top-level }	

–  confine(S) = { covert, top-level }	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #30	

Information Flow	

•  By confinement flow

model:	

–  PRO ≤ A, A ≤ PRO	

–  PRO ≤ S	

–  A ≤ S, S ≤ A	

•  Data cannot flow to
public relations
officers; not transitive	

–  S ≤ A, A ≤ PRO	

–  S ≤ PRO is false	

top-level	

analysis	

 covert	

public	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #31	

Transforming Into Lattice	

•  Rough idea: apply a special mapping to generate a
subset of the power set of the set of classes	

–  Done so this set is partially ordered	

–  Means it can be transformed into a lattice	

•  Can show this mapping preserves ordering relation	

–  So it preserves non-orderings and non-transitivity of

elements corresponding to those of original set	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #32	

Dual Mapping	

•  R = (SCR, ≤R, joinR) reflexive info flow policy	

•  P = (SP, ≤P) ordered set	

–  Define dual mapping functions lR, hR: SCR→SP	

•  lR(x) = { x }	

•  hR(x) = { y | y ∈ SCR ∧ y ≤R x }	

–  SP contains subsets of SCR; ≤P subset relation	

–  Dual mapping function order preserving iff	

(∀a, b ∈ SCR)[a ≤R b ⇔ lR(a) ≤P hR(b)]	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #33	

Theorem	

Dual mapping from reflexive info flow policy
R to ordered set P order-preserving	

Proof sketch: all notation as before	

(⇒) Let a ≤R b. Then a ∈ lR(a), a ∈ hR(b), so
lR(a) ⊆ hR(b), or lR(a) ≤P hR(b)	

(⇐) Let lR(a) ≤P hR(b). Then lR(a) ⊆ hR(b).
But lR(a) = { a }, so a ∈ hR(b), giving a ≤R b	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #34	

Info Flow Requirements	

•  Interpretation: let confine(x) = { xL, xU },
consider class y	

–  Information can flow from x to element of y iff

xL ≤R y, or lR(xL) ⊆ hR(y)	

–  Information can flow from element of y to x iff

y ≤R xU, or lR(y) ⊆ hR(xU)	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #35	

Revisit Government Example	

•  Information flow policy is R	

•  Flow relationships among classes are:	

public ≤R public	

public ≤R analysis 	

analysis ≤R analysis	

public ≤R covert 	

covert ≤R covert	

public ≤R top-level 	

covert ≤R top-level	

analysis ≤R top-level 	

top-level ≤R top-level	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #36	

Dual Mapping of R	

•  Elements lR, hR:	

lR(public) = { public }	

hR(public = { public }	

lR(analysis) = { analysis }	

hR(analysis) = { public, analysis }	

lR(covert) = { covert }	

hR(covert) = { public, covert }	

lR(top-level) = { top-level }	

hR(top-level) = { public, analysis, covert, top-level }	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #37	

confine	

•  Let p be entity of type PRO, a of type A, s
of type S	

•  In terms of P (not R), we get:	

–  confine(p) = [{ public }, { public, analysis }]	

–  confine(a) = [{ analysis },	

	

 	

{ public, analysis, covert, top-level }]	

–  confine(s) = [{ covert },	

	

 	

{ public, analysis, covert, top-level }]	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #38	

And the Flow Relations Are …	

•  p → a as lR(p) ⊆ hR(a)	

–  lR(p) = { public }	

–  hR(a) = { public, analysis, covert, top-level }	

•  Similarly: a → p, p → s, a → s, s → a	

•  But s → p is false as lR(s) ⊄ hR(p)	

–  lR(s) = { covert }	

–  hR(p) = { public, analysis }	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #39	

Analysis	

•  (SP, ≤P) is a lattice, so it can be analyzed
like a lattice policy	

•  Dual mapping preserves ordering, hence
non-ordering and non-transitivity, of
original policy	

– So results of analysis of (SP, ≤P) can be mapped

back into (SCR, ≤R, joinR)	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #40	

Compiler-Based Mechanisms	

•  Detect unauthorized information flows in a

program during compilation	

•  Analysis not precise, but secure	

–  If a flow could violate policy (but may not), it is
unauthorized	

–  No unauthorized path along which information could
flow remains undetected	

•  Set of statements certified with respect to
information flow policy if flows in set of
statements do not violate that policy	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #41	

Example	

if x = 1 then y := a;!
else y := b;!

•  Info flows from x and a to y, or from x and b
to y	

•  Certified only if x ≤ y and a ≤ y and b ≤ y 	

– Note flows for both branches must be true

unless compiler can determine that one branch
will never be taken	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #42	

Declarations	

•  Notation:	

x: int class { A, B }	

 	

means x is an integer variable with security
class at least lub{ A, B }, so lub{ A, B } ≤ x	

•  Distinguished classes Low, High	

– Constants are always Low	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #43	

Input Parameters	

•  Parameters through which data passed into
procedure	

•  Class of parameter is class of actual
argument	

ip: type class { ip }	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #44	

Output Parameters	

•  Parameters through which data passed out of
procedure	

–  If data passed in, called “input/output parameter”	

•  As information can flow from input parameters to
output parameters, class must include this:	

op: type class { r1, . . ., rn }	

	

where ri is class of ith input or input/output
argument 	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #45	

Example	

proc sum(x: int class { A };!
! !var out: int class { A, B });!
begin!
!out := out + x;!
end;!

•  Require x ≤ out and out ≤ out 	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #46	

Array Elements	

•  Information flowing out:	

. . . := a[i]!

	

Value of i, a[i] both affect result, so class is
lub{ a[i], i }	

•  Information flowing in:	

a[i] := . . .	

•  Only value of a[i] affected, so class is a[i] 	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #47	

Assignment Statements	

x := y + z;	

•  Information flows from y, z to x, so this

requires lub(y, z) ≤ x	

More generally:	

y := f(x1, . . ., xn)	

•  the relation lub(x1, …, xn) ≤ y must hold	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #48	

Compound Statements	

x := y + z; a := b * c – x;	

•  First statement: lub(y, z) ≤ x	

•  Second statement: lub(b, c, x) ≤ a	

•  So, both must hold (i.e., be secure)	

More generally:	

S1; . . . Sn;	

•  Each individual Si must be secure	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #49	

Conditional Statements	

if x + y < z then a := b else d := b * c – x; end!

•  The statement executed reveals information about
x, y, z, so lub(x, y, z) ≤ glb(a, d)	

More generally:	

if f(x1, . . ., xn) then S1 else S2; end!

•  S1, S2 must be secure	

•  lub(x1, …, xn) ≤	

 glb(y | y target of assignment in S1, S2)	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #50	

Iterative Statements	

while i < n do begin a[i] := b[i]; i := i + 1; end!

•  Same ideas as for “if”, but must terminate	

More generally:	

while f(x1, . . ., xn) do S;	

•  Loop must terminate;	

•  S must be secure	

•  lub(x1, …, xn) ≤	

 glb(y | y target of assignment in S)	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #51	

Goto Statements	

•  No assignments	

– Hence no explicit flows	

•  Need to detect implicit flows	

•  Basic block is sequence of statements that

have one entry point and one exit point	

– Control in block always flows from entry point

to exit point	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #52	

Example Program	

proc tm(x: array[1..10][1..10] of int class {x};!
 var y: array[1..10][1..10] of int class {y});!
var i, j: int {i};!
begin!
b1 i := 1;!
b2 L2: if i > 10 goto L7;!
b3 j := 1;!
b4 L4: if j > 10 then goto L6;!
b5 y[j][i] := x[i][j]; j := j + 1; goto L4;!
b6 L6: i := i + 1; goto L2;!
b7 L7:!
end;!

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #53	

Flow of Control	

b1	

 b2	

 b7	

b6	

b3	

b4	

b5	

i > n	

i ≤ n	

j > n	

j ≤ n	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #54	

IFDs	

•  Idea: when two paths out of basic block, implicit

flow occurs	

–  Because information says which path to take	

•  When paths converge, either:	

–  Implicit flow becomes irrelevant; or	

–  Implicit flow becomes explicit	

•  Immediate forward dominator of basic block b
(written IFD(b)) is first basic block lying on all
paths of execution passing through b	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #55	

IFD Example	

•  In previous procedure:	

–  IFD(b1) = b2 	

one path	

–  IFD(b2) = b7 	

b2→b7 or b2→b3→b6→b2→b7	

–  IFD(b3) = b4 	

one path	

–  IFD(b4) = b6 	

b4→b6 or b4→b5→b6	

–  IFD(b5) = b4 	

one path	

–  IFD(b6) = b2 	

one path	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #56	

Requirements	

•  Bi is set of basic blocks along an execution path

from bi to IFD(bi)	

–  Analogous to statements in conditional statement	

•  xi1, …, xin variables in expression selecting which
execution path containing basic blocks in Bi used	

–  Analogous to conditional expression	

•  Requirements for secure:	

–  All statements in each basic blocks are secure	

–  lub(xi1, …, xin) ≤ glb{ y | y target of assignment in Bi }	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #57	

Example of Requirements	

•  Within each basic block:	

b1: Low ≤ i	

 	

b3: Low ≤ j 	

 b6: lub{ Low, i } ≤ i	

b5: lub(x[i][j], i, j) ≤ y[j][i]; lub(Low, j) ≤ j	

–  Combining, lub(x[i][j], i, j) ≤ y[j][i]	

–  From declarations, true when lub(x, i) ≤ y	

•  B2 = {b3, b4, b5, b6}	

–  Assignments to i, j, y[j][i]; conditional is i ≤ 10	

–  Requires i ≤ glb(i, j, y[j][i])	

–  From declarations, true when i ≤ y	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #58	

Example (continued)	

•  B4 = { b5 }	

– Assignments to j, y[j][i]; conditional is j ≤ 10	

– Requires j ≤ glb(j, y[j][i])	

– From declarations, means i ≤ y	

•  Result:	

– Combine lub(x, i) ≤ y; i ≤ y; i ≤ y	

– Requirement is lub(x, i) ≤ y	

May 13, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #59	

