Lecture 19

e Information flow

e Basics and background
— Entropy

* Non-lattice flow policies
 Compiler-based mechanisms
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Entropy

e Uncertainty of a value, as measured 1n bits

e Example: X value of fair coin toss; X could
be heads or tails, so 1 bit of uncertainty

— Therefore entropy of X 1s H(X) =1

e Formal definition: random variable X,
values x;, ..., x,; S0 2. p(X=x,) =1

H(X) =-2; p(X=x) 1g p(X = x;)
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Heads or Tails?

e HX)= - p(X=heads) lg p(X = heads)

— p(X = tails) Ig p(X = tails)
—(172) 1g (1/2) — (1/2) 1g (1/2)
- (12) D) -(172) (1) =1

e Confirms previous intuitive result
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n-Sided Fair Die

HX)=-2,p(X=x)1g p(X =x,)

As p(X = x;) = 1/n, this becomes

H(X) =-2. (1/n) 1g (1/ n) = —n(1/n) (-lg n)
SO

HX)=1gn
which 1s the number of bits 1n 7, as expected

May 13,2013 ECS 235B Spring Quarter 2013 Slide #4



Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul
W represents the winner. What 1s its entropy”?

— w; = Ann, w, = Pam, w; = Paul
— p(W=w,) = p(W=w,) =2/5, p(W=w;) =1/5
* So HW)=-Z,p(W=w) g p(W=w)
=—(2/5) 1g (2/5) — (2/5) 1g (2/5) — (1/5) 1g (1/5)
=—(4/5)+1g5=1.52
e If all equally likely to win, H(W) =1g 3 =1.58
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Joint Entropy

e X takes values from { x,,...,x, }

-2 pX=x)=1
e Ytakes values from{ y,, ..., y, }
-2 p(Y=y)=1

e Joint entropy of X, Y 1s:
- HX,Y) =-2 2, p(X=x,, Y=y) lg p(X=x;, Y=y))
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Example

X: roll of fair die, Y: flip of coin
p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12
— As X and Y are independent
HX,Y) = —Zj 2. p(X=x,, Y=yj) lg p(X=x;,, Y=yj)
=2[6[(1/12)1g (1/12) ] ] =1g 12
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Conditional Entropy

e X takes values from { x, ..., x, }
- 2. pX=x)=1

e Ytakes values from { y,,...,y,, }
-2, p(Y=y) =1

* Conditional entropy of X given Y=y; is:
- HX | Y=y) = -2, p(X=x; | Y=y)) 1g p(X=x; | Y=y,
e Conditional entropy of X given Y is:
- HX1Y)=-2,p(Y=y) Z, p(X=x; | Y=y) lg p(X=x; | Y=y))
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Example

e X roll of red die, Y sum of red, blue roll

e Note p(X=11Y=2)=1,p(X=ilY=2)=0fori#1
— If the sum of the rolls i1s 2, both dice were 1

e HXIY=2)=-2 p(X=x;| Y=2) 1g p(X=x,1 ¥=2) =0

e Note p(X=i1,Y=7)=1/6

— If the sum of the rolls 1s 7, the red die can be any of 1,
..., 6 and the blue die must be 7—roll of red die

o H(XIY=7) = -3 p(X=x,| Y=7) lg p(X=x,| Y=7)
=6 (1/6)1g (1/6) =1g 6
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Perfect Secrecy

e Cryptography: knowing the ciphertext does
not decrease the uncertainty of the plaintext

* M={my,...,m, } set of messages
e C=1{cy,...,c, } set of messages

e Cipher ¢, = E(m,) achieves perfect secrecy it
HMIC)=HM)
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Entropy and Information Flow

e Idea: info flows from x to y as a result of a
sequence of commands c if you can deduce
information about x before ¢ from the value
in y after ¢

 Formally:

— s time before execution of ¢, ¢ time after
— H(x; 1 y) <H(xg 1y
— If no y at time s, then H(x, | y,) < H(x,)
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Example 1

e Command is x :=y + z; where:

— 0 =y =<7, equal probability

— z=1 with prob. 1/2, z =2 or 3 with prob. 1/4 each
e s state before command executed; 7, after; so

— H(y,) =H(y) =-8(1/8) Ig (1/8) = 3

— H(z,) = H(z,) = —(1/2) 1g (1/2) —=2(1/4) 1g (1/4) = 1.5
e If you know x,, y. can have at most 3 values, so

H(y Ix)=-3(1/3)1g (1/3) =1g 3
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Example 2

e Command is
—ifx=1theny:=0elsey:=1;
where:
— x,y equally likely to be either O or 1
* H(x,) =1 as x can be either O or 1 with equal
probability
e H(x,ly)=0asify =1 thenx, =0 and vice versa
— Thus, H(x,ly,)=0<1=H(x))
e So information flowed from x to y
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Implicit Flow of Information

e Information flows from x to y without an
explicit assignment of the form y := f(x)

— f(x) an arithmetic expression with variable x
 Example from previous slide:
—ifx=1theny:=0
else y :=1;
* So must look for implicit flows of
information to analyze program
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Notation

e x means class of x

— In Bell-LaPadula based system, same as “label
of security compartment to which x belongs”™

* x <y means “information can flow from an

element 1n class of x to an element 1n class
of y”

— Or, “information with a label placing it in class
x can flow 1nto class y”
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Information Flow Policies

Information flow policies are usually:

e reflexive

— So information can flow freely among members
of a single class

e transitive

— So if information can flow from class 1 to class
2, and from class 2 to class 3, then information
can flow from class 1 to class 3
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Non-Transitive Policies

e Betty 1s a confident of Anne
e Cathy 1s a confident of Betty

— With transitivity, information flows from Anne
to Betty to Cathy

* Anne confides to Betty she 1s having an
affair with Cathy’s spouse

— Transitivity undesirable in this case, probably

May 13,2013 ECS 235B Spring Quarter 2013 Slide #20



Transitive Non-Lattice Policies

e 2 faculty members co-PIs on a grant
— Equal authority; neither can overrule the other

* Grad students report to faculty members
* Undergrads report to grad students

e Information flow relation is:
— Reflexive and transitive

e But some elements (people) have no “least upper
bound” element
— What is it for the faculty members?
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Confidentiality Policy Model

e Lattice model fails in previous 2 cases
e Generalize: policy I = (SC,, <;, join,):
— SC, set of security classes
— <, ordering relation on elements of SC,
— join, function to combine two elements of SC,

 Example: Bell-LaPadula Model

— SC, set of security compartments
— <, ordering relation dom
— join, function lub
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Confinement Flow Model

e (1,0, confine, —)
- 1 =(8C,, =, join))
— O set of entities
— —: Ox0 with (a, b) € — (written a — b) iff
information can flow from a to b
— for a € O, confine(a) = (a;, ay) € SCxSC, with a; <, a,

* Interpretation: for a € O, if x <; ay, info can flow from x to a,
and 1f a; <, x, info can flow from a to x

* So a, lowest classification of info allowed to flow out of a, and
a,; highest classification of info allowed to flow into a
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Assumptions, efc.

e Assumes: object can change security classes

— S0, variable can take on security class of its
data

e Object x has security class x currently
e Note transitivity not required

e [f information can flow from a to b, then b
dominates a under ordering of policy I:

Va,beO)a—=b=aqa, <,b,]
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Example 1

e SC,={U,C, S, TS },withU<,C,C<, S, and
S <, TS
* a.b,ce 0
— confine(a) =[ C, C ]
— confine(b) =[S, S ]
— confine(c) =[ TS, TS ]
e Secure information flows: a = b,a —c,b — ¢

— Transitivity holds
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Example 2

e SC,, <,as 1n Example 1

* x,y,2€ 0
— confine(x) =[ C, C |
— confine(y) =[S, S |
— confine(z) = [ C, TS |
e Secure information flows: x =y, x =z, y — z,
=X, Yy
— ASX; <Yy X <2y YL Sy 2y 2 1 Xys 20 S Vo

— Transitivity does not hold
e y—zandz— x,buty — x is false, because y, <, x, is false
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Transitive Non-Lattice Policies

* Q=(5y,=p) 1s a quasi-ordered set when <,
1s transitive and reflexive over S 0
e How to handle information flow?

— Define a partially ordered set containing quasi-
ordered set

— Add least upper bound, greatest lower bound to
partially ordered set

— It’s a lattice, so apply lattice rules!
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In Detail ...

e VxeS,letflr)={ylyESyny=<,x}
— Define S,p={f(x) Ix&€E S, }
— Define <,p={ (x,y) lx,yES, A xCy}
* Syp partially ordered set under <,
* fpreserves order, so y <, x iff f(x) <,p f(¥)
e Add upper, lower bounds
— Sop =Spp U {85, }
— Upper bound ub(x,y) ={z1z€SppAxCzAyLlz}
— Least upper bound lub(x,y) = Nub(x, y)

e Lower bound, greatest lower bound defined analogously
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And the Policy Is ...

* Now (Syp , <pp) 18 lattice

e Information flow policy on quasi-ordered
set emulates that of this lattice!
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Non-transitive Flow Policies

 Government agency information flow policy
(on next slide)

* Entities public relations officers PRO,
analysts A, spymasters S

— confine(PRO) = { public, analysis }
— confine(A) = { analysis, top-level }
— confine(S) = { covert, top-level }
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Information Flow

* By confinement flow

model: top-level
— PRO<A,A <PRO
- PRO<S /
- A=5,5=<A analysis cqvert

e Data cannot flow to
public relations
officers; not transitive

- S<A,A=<PRO
— S <PRO is false

public
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Transforming Into Lattice

 Rough idea: apply a special mapping to generate a
subset of the power set of the set of classes
— Done so this set is partially ordered
— Means it can be transformed into a lattice

e (Can show this mapping preserves ordering relation

— So 1t preserves non-orderings and non-transitivity of
elements corresponding to those of original set
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Dual Mapping

* R=(SCy, =i, joiny) reflexive info flow policy
e P=(S,,<p) ordered set

— Define dual mapping functions Iy, hp: SCp—S,

o lg)={x}
e hp(x)={ylyeSCrny=<px}

— Sp contains subsets of SCp; <, subset relation

— Dual mapping function order preserving iff
(Va,be SCp) a<pb < [ (a) <p hp(D) ]
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Theorem

Dual mapping from reflexive info flow policy
R to ordered set P order-preserving

Proof sketch: all notation as before

(=) Leta <5 b. Then a € [ (a), a € hy(b), so
[(a) & hp(b), or [ (a) <p hp(b)

(=) Let [,(a) <p hp(b). Then [ (a) € hy(b).
But [(a) ={ a },s0 a € hg(b), giving a <, b
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Info Flow Requirements

* Interpretation: let confine(x) ={ x;,x; },
consider class y
— Information can flow from x to element of y iff

X <g ¥, 0r [p(x;) € hyp(y)
— Information can flow from element of y to x iff

Y < Xy, Of [p(y) & hg(xy)
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Revisit Government Example

e Information flow policy is R

* Flow relationships among classes are:

public <, public

public <, analysis analysis <, analysis
public <, covert covert <, covert
public <, top-level covert <, top-level

analysis <, top-level top-level <, top-level
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Dual Mapping of R

* Elements [y, hp:
[(public) = { public }
hp(public = { public }
[.(analysis) = { analysis }
hp(analysis) = { public, analysis }
[.(covert) = { covert }
hp(covert) = { public, covert }
[(top-level) = { top-level }

hp(top-level) = { public, analysis, covert, top-level }
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confine

e Let p be entity of type PRO, a of type A, s
of type S
e In terms of P (not R), we get:
— confine(p) = [ { public }, { public, analysis } ]
— confine(a) = [ { analysis },
{ public, analysis, covert, top-level } ]
— confine(s) = [ { covert },
{ public, analysis, covert, top-level } |
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And the Flow Relations Are ...

* p—>aasiyp) & hyla)
— lg(p) = { public }
— hg(a) = { public, analysis, covert, top-level }

e Similarly: a = p,p = s,a—>s,5s = a
* Buts — pis false as [(s) T hy(p)

— [(s) = { covert }
— hg(p) = { public, analysis }
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Analysis

* (Sp, <p)1s alattice, so it can be analyzed
like a lattice policy

* Dual mapping preserves ordering, hence
non-ordering and non-transitivity, of
original policy

— So results of analysis of (Sp, <p) can be mapped
back into (SCy, <, joing)
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Compiler-Based Mechanisms

e Detect unauthorized information flows in a
program during compilation
* Analysis not precise, but secure

— If a flow could violate policy (but may not), it 1s
unauthorized

— No unauthorized path along which information could
flow remains undetected

e Set of statements certified with respect to
information flow policy if flows 1n set of
statements do not violate that policy
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Example

if x =1 then y := a;

else y := b;

e Info flows from x and a to y, or from x and b
toy

e Certifiedonlyif x<yanda<yand b <y

— Note flows for both branches must be true
unless compiler can determine that one branch

will never be taken
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Declarations

e Notation:
x: int class { A, B }

means x 1s an integer variable with security
class at least lub{ A,B },so lub{ A,B } <x

e Distinguished classes Low, High

— Constants are always Low
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Input Parameters

e Parameters through which data passed into
procedure

e Class of parameter 1s class of actual
argument

i,: type class { i, }
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Output Parameters

Parameters through which data passed out of
procedure

— If data passed 1n, called “input/output parameter”

As information can flow from input parameters to
output parameters, class must include this:

o,: type class { r,, . . ., r,}

where r; 1s class of ith input or input/output
argument
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Example

proc sum(x: int class { A };
var out: int class { A, B });
begin
out := out + Xx;

end;

 Require x < out and out < out
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Array Elements

e Information flowing out:
:= al[i1]
Value of i, ali] both affect result, so class 1s
lub{ ali], i }
e Information flowing in:
a[i] := .

* Only value of a[i] affected, so class 1s ai
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Assignment Statements

X:=y+z;
e Information flows from y, z to x, so this
requires lub(y,z) <x
More generally:
y = f(xy, « « «, X,)
e the relation lub( x,, ..., X,) <y must hold
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Compound Statements

xX:=y+z,a:=b*c-ux;
e First statement: lub(y, z) < x

e Second statement: [ub(b, c,x) <a

* So, both must hold (i.e., be secure)
More generally:
S;7 « o « S.;

n

e Each individual S; must be secure
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Conditional Statements

if x + y < z then a := b else d := b * ¢ — x; end
e The statement executed reveals information about
X,¥,2,80 lub(x,y, z) < glb(a, d)

More generally:
if f(x,, . . ., x,) then S, else S,; end

* §,,S, must be secure
* lub(x,,...,x,) <

glb(y | y target of assignment in S, S,)

May 13,2013 ECS 235B Spring Quarter 2013 Slide #50



Iterative Statements

while 1 < n do begin a[i] := b[1]; i := 1 + 1; end
e Same ideas as for “if”’, but must terminate
More generally:

while f(x;, . . ., x,) do S;
e Loop must terminate;
e S must be secure
* lub(x,...,x,) <

glb(y | y target of assignment in S)
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Goto Statements

* No assignments

— Hence no explicit flows
 Need to detect implicit flows

* Basic block 1s sequence of statements that
have one entry point and one exit point

— Control in block always flows from entry point
to exit point

May 13,2013 ECS 235B Spring Quarter 2013 Slide #52



Example Program

proc tm(x: array[l..10][1..10] of int class {x};
var y: array[l..10][1..10] of int class {y});
var 1, j: int {i};

begin

by 1 := 1;

b, L2: if 1 > 10 goto L7;

by j = 1;

b, L4: if 7 > 10 then goto L6;

bs y[3ll1] = x[(1]1[J]; J := j + 1; goto L4;
bs L6: i := 1 + 1; goto L2;

b, L7

end;
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Flow of Control

v
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IFDs

e Idea: when two paths out of basic block, implicit
flow occurs

— Because information says which path to take
* When paths converge, either:

— Implicit flow becomes irrelevant; or

— Implicit flow becomes explicit

o [mmediate forward dominator of basic block b
(written IFD(b)) 1s first basic block lying on all
paths of execution passing through b
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IFD Example

* In previous procedure:

(b,) = b, one path

(b,) =b; b,—b, or by—~>b;—b.—>b,—b,
(by) = b, one path

(by) = bs by—>bg or by—>bs—b

(bs) = b, one path

(bg) = b, one path

¢ ¢ ¢ ¢ ¢ ¢
r r r r r r
¢ ¢ ¢ ¢ ¢ 6
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Requirements

* B, 1s set of basic blocks along an execution path
from b, to IFD();)

— Analogous to statements in conditional statement
* X, ...,X; variables in expression selecting which
execution path containing basic blocks in B; used
— Analogous to conditional expression

* Requirements for secure:
— All statements in each basic blocks are secure
— lub(x;, ..., x;,) < glb{ y | y target of assignment in B, }

May 13,2013 ECS 235B Spring Quarter 2013 Slide #57



Example of Requirements

e Within each basic block:
b,: Low <1 by: Low < ] be: lub{ Low,i } <1i
bs: ubGLillfl, i, ) < YIillil; lub(Low, ) < j
— Combining, lub(x[i][jl, 1, )) < yljlli]
— From declarations, true when lub(x,i) <y
e B,={bs, by, bs, b}
— Assignments to i, j, y[j][i]; conditional is i < 10
— Requires i < glb(, j, v[jlli])
— From declarations, true wheni <y
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Example (continued)

* By={bs5}
— Assignments to j, y[j][i]; conditional 1s j < 10

— Requires j < glb(j, y[jlli])

— From declarations, means i <y

e Result:
— Combine lub(x,i) <y, i<Vy;i<Yy

— Requirement 1s lub(x,1) <y
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