January 16, 2014 Outline

Reading: *text*, §3.1–3.4

Assignments due: Homework #1, due January 23, 2014

- 1. What is the safety question?
 - a. An unauthorized state is one in which a generic right r could be leaked into an entry in the ACM that did not previously contain r. An initial state is safe for r if it cannot lead to a state in which r could be leaked.
 - b. Question: in a given arbitrary protection system, is safety decidable?
- 2. Mono-operational case: there is an algorithm that decides whether a given mono-operational system and initial state is safe for a given generic right.
- 3. General case: It is undecidable whether a given state of a given protection system is safe for a given generic right.
 - a. Approach: represent Turing machine tape as access control matrix, transitions as commands
 - b. Reduce halting problem to it
- 4. Related results
 - a. The set of unsafe systems is recursively enumerable
 - b. Monotonicity: no *delete* or *destroy* primitive operations
 - c. The safety question for biconditional monotonic protection systems is undecidable.
 - d. The safety question for monoconditional monotonic protection systems is decidable.
 - e. The safety question for monoconditional protection systems without the *destroy* primitive operation is decidable.
- 5. Take-Grant Protection Model
 - a. Counterpoint to HRU result
 - b. Symmetry of take and grant rights
 - c. Islands (maximal subject-only *tg*-connected subgraphs)
 - d. Bridges (as a combination of terminal and initial spans)
- 6. Sharing
 - a. Definition: $can \bullet share(\alpha, \mathbf{x}, \mathbf{y}, G_0)$ true iff there exists a sequence of protection graphs $G_0, ..., G_n$ such that $G_0 \vdash^* G_n$ using only take, grant, create, remove rules and in G_n , there is an edge from \mathbf{x} to \mathbf{y} labeled α
 - b. Theorem: $can \bullet share(r, \mathbf{x}, \mathbf{y}, G_0)$ iff there is an edge from \mathbf{x} to \mathbf{y} labeled r in G_0 , or all of the following hold:
 - i. there is a vertex \mathbf{y}' with an edge from \mathbf{y}' to \mathbf{y} labeled r;
 - ii. there is a subject \mathbf{y}'' which terminally spans to \mathbf{y}' , or $\mathbf{y}'' = \mathbf{y}'$;
 - iii. there is a subject \mathbf{x}' which initially spans to \mathbf{x} , or $\mathbf{x}' = \mathbf{x}$; and
 - iv. there is a sequence of islands $I_1, ..., I_n$ connected by bridges for which $\mathbf{x}' \in I_1$ and $\mathbf{y}' \in I_n$.
- 7. Model Interpretation
 - a. ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
 - b. Example: shared buffer managed by trusted third party
- 8. Schematic Protection Model
 - a. Protection type, ticket, function, link predicate, filter function
 - b. Take-Grant as an instance of SPM
 - c. Create rules and attenuation
- 9. Safety analysis
 - a. Definitions
 - b. $path^h$ predicate
 - c. Capacity flow function
 - d. Maximal state: definition, existence, derivability
- 10. Acyclic attenuating schemes and decidability