February 27, 2014

- Information flow
- Information flow policies
 - Non-transitive
 - Transitive non-lattice
- Compiler-based mechanisms
- Execution-based mechanisms
Entropy and Information Flow

- Idea: info flows from \(x \) to \(y \) as a result of a sequence of commands \(c \) if you can deduce information about \(x \) before \(c \) from the value in \(y \) after \(c \)
- Formally:
 - \(s \) time before execution of \(c \), \(t \) time after
 - \(H(x_s \mid y_t) < H(x_s \mid y_s) \)
 - If no \(y \) at time \(s \), then \(H(x_s \mid y_t) < H(x_s) \)
Example 1

- Command is $x := y + z$; where:
 - $0 \leq y \leq 7$, equal probability
 - $z = 1$ with prob. $1/2$, $z = 2$ or 3 with prob. $1/4$ each

- s state before command executed; t, after; so
 - $H(y_s) = H(y_t) = -8(1/8) \log_2 (1/8) = 3$
 - $H(z_s) = H(z_t) = -(1/2) \log_2 (1/2) - 2(1/4) \log_2 (1/4) = 1.5$

- If you know x_t, y_s can have at most 3 values, so
 $H(y_s \mid x_t) = -3(1/3) \log_2 (1/3) = \log_2 3$
Example 2

• Command is
 – \textbf{if} \(x = 1 \) \textbf{then} \(y := 0 \) \textbf{else} \(y := 1 \);

where:
 – \(x, y \) equally likely to be either 0 or 1

• \(H(x_s) = 1 \) as \(x \) can be either 0 or 1 with equal probability

• \(H(x_s \mid y_t) = 0 \) as if \(y_t = 1 \) then \(x_s = 0 \) and vice versa
 – Thus, \(H(x_s \mid y_t) = 0 < 1 = H(x_s) \)

• So information flowed from \(x \) to \(y \)
Implicit Flow of Information

• Information flows from x to y without an explicit assignment of the form $y := f(x)$
 – $f(x)$ an arithmetic expression with variable x
• Example from previous slide:
 – if $x = 1$ then $y := 0$
 else $y := 1$;
• So must look for implicit flows of information to analyze program
Notation

• \(x \) means class of \(x \)
 – In Bell-LaPadula based system, same as “label of security compartment to which \(x \) belongs”

• \(x \leq y \) means “information can flow from an element in class of \(x \) to an element in class of \(y \)”
 – Or, “information with a label placing it in class \(x \) can flow into class \(y \)”
Information Flow Policies

Information flow policies are usually:

• reflexive
 – So information can flow freely among members of a single class

• transitive
 – So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3
Non-Transitive Policies

• Betty is a confident of Anne
• Cathy is a confident of Betty
 – With transitivity, information flows from Anne to Betty to Cathy
• Anne confides to Betty she is having an affair with Cathy’s spouse
 – Transitivity undesirable in this case, probably
Transitive Non-Lattice Policies

• 2 faculty members co-PIs on a grant
 – Equal authority; neither can overrule the other
• Grad students report to faculty members
• Undergrads report to grad students
• Information flow relation is:
 – Reflexive and transitive
• But some elements (people) have no “least upper bound” element
 – What is it for the faculty members?
Confidentiality Policy Model

- Lattice model fails in previous 2 cases
- Generalize: policy $I = (SC_I, \leq_I, join_I)$:
 - SC_I set of security classes
 - \leq_I ordering relation on elements of SC_I
 - $join_I$ function to combine two elements of SC_I
- Example: Bell-LaPadula Model
 - SC_I set of security compartments
 - \leq_I ordering relation dom
 - $join_I$ function lub
Confinement Flow Model

- \((I, O, \text{confine}, \rightarrow)\)
 - \(I = (SC_I, \leq_I, \text{join}_I)\)
 - \(O\) set of entities
 - \(\rightarrow: O \times O\) with \((a, b) \in \rightarrow\) (written \(a \rightarrow b\)) iff information can flow from \(a\) to \(b\)
 - for \(a \in O\), \(\text{confine}(a) = (a_L, a_U) \in SC_I \times SC_I\) with \(a_L \leq_I a_U\)
 - Interpretation: for \(a \in O\), if \(x \leq_I a_U\), info can flow from \(x\) to \(a\), and if \(a_L \leq_I x\), info can flow from \(a\) to \(x\)
 - So \(a_L\) lowest classification of info allowed to flow out of \(a\), and \(a_U\) highest classification of info allowed to flow into \(a\)
Assumptions, etc.

- Assumes: object can change security classes
 - So, variable can take on security class of its data
- Object x has security class x currently
- Note transitivity *not* required
- If information can flow from a to b, then b dominates a under ordering of policy I:
 \[(\forall a, b \in O)[a \rightarrow b \Rightarrow a_L \leq_I b_U]\]
Example 1

- $SC_I = \{ U, C, S, TS \}$, with $U \leq_I C$, $C \leq_I S$, and $S \leq_I TS$
- $a, b, c \in O$
 - $\text{confine}(a) = [C, C]$
 - $\text{confine}(b) = [S, S]$
 - $\text{confine}(c) = [TS, TS]$
- Secure information flows: $a \rightarrow b$, $a \rightarrow c$, $b \rightarrow c$
 - As $a_L \leq_I b_U$, $a_L \leq_I c_U$, $b_L \leq_I c_U$
 - Transitivity holds
Example 2

- SC_I, \leq_I as in Example 1
- $x, y, z \in O$
 - $\text{confine}(x) = [C, C]$
 - $\text{confine}(y) = [S, S]$
 - $\text{confine}(z) = [C, TS]$
- Secure information flows: $x \rightarrow y$, $x \rightarrow z$, $y \rightarrow z$, $z \rightarrow x$, $z \rightarrow y$
 - As $x_L \leq_I y_U, x_L \leq_I z_U, y_L \leq_I z_U, z_L \leq_I x_U, z_L \leq_I y_U$
 - Transitivity does not hold
 - $y \rightarrow z$ and $z \rightarrow x$, but $y \rightarrow x$ is false, because $y_L \leq_I x_U$ is false
Transitive Non-Lattice Policies

- $Q = (S_Q, \leq_Q)$ is a quasi-ordered set when \leq_Q is transitive and reflexive over S_Q
- How to handle information flow?
 - Define a partially ordered set containing quasi-ordered set
 - Add least upper bound, greatest lower bound to partially ordered set
 - It’s a lattice, so apply lattice rules!
In Detail …

• \(\forall x \in S_Q: \text{let } f(x) = \{ y \mid y \in S_Q \land y \leq_Q x \} \)
 - Define \(S_{QP} = \{ f(x) \mid x \in S_Q \} \)
 - Define \(\leq_{QP} = \{ (x, y) \mid x, y \in S_{QP} \land x \subseteq y \} \)
 - \(S_{QP} \) partially ordered set under \(\leq_{QP} \)
 - \(f \) preserves order, so \(y \leq_Q x \text{ iff } f(x) \leq_{QP} f(y) \)

• Add upper, lower bounds
 - \(S_{QP}' = S_{QP} \cup \{ S_Q, \emptyset \} \)
 - Upper bound \(ub(x, y) = \{ z \mid z \in S_{QP} \land x \subseteq z \land y \subseteq z \} \)
 - Least upper bound \(lub(x, y) = \bigcap ub(x, y) \)
 - Lower bound, greatest lower bound defined analogously
And the Policy Is …

• Now $(S_{QP'}, \leq_{QP})$ is lattice
• Information flow policy on quasi-ordered set emulates that of this lattice!
Non-Transitive Flow Policies

• Government agency information flow policy (on next slide)
• Entities public relations officers PRO, analysts A, spymasters S
 – \(\text{confine}(\text{PRO}) = \{ \text{public, analysis} \} \)
 – \(\text{confine}(\text{A}) = \{ \text{analysis, top-level} \} \)
 – \(\text{confine}(\text{S}) = \{ \text{covert, top-level} \} \)
Information Flow

• By confinement flow model:
 – $\text{PRO} \leq A$, $A \leq \text{PRO}$
 – $\text{PRO} \leq S$
 – $A \leq S$, $S \leq A$

• Data \textit{cannot} flow to public relations officers; not transitive
 – $S \leq A$, $A \leq \text{PRO}$
 – $S \leq \text{PRO}$ is \textit{false}
Transforming Into Lattice

• Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
 – Done so this set is partially ordered
 – Means it can be transformed into a lattice

• Can show this mapping preserves ordering relation
 – So it preserves non-orderings and non-transitivity of elements corresponding to those of original set
Dual Mapping

- $R = (SC_R, \leq_R, \text{join}_R)$ reflexive info flow policy
- $P = (S_P, \leq_P)$ ordered set
 - Define dual mapping functions $l_R, h_R: SC_R \rightarrow S_P$
 - $l_R(x) = \{ x \}$
 - $h_R(x) = \{ y \mid y \in SC_R \land y \leq_R x \}$
 - S_P contains subsets of SC_R; \leq_P subset relation
 - Dual mapping function order preserving iff
 \[(\forall a, b \in SC_R)[a \leq_R b \iff l_R(a) \leq_P h_R(b)]\]
Theorem

Dual mapping from reflexive info flow policy R to ordered set P order-preserving

Proof sketch: all notation as before

(\Rightarrow) Let $a \leq_R b$. Then $a \in l_R(a), a \in h_R(b)$, so $l_R(a) \subseteq h_R(b)$, or $l_R(a) \leq_P h_R(b)$

(\Leftarrow) Let $l_R(a) \leq_P h_R(b)$. Then $l_R(a) \subseteq h_R(b)$. But $l_R(a) = \{ a \}$, so $a \in h_R(b)$, giving $a \leq_R b$
Info Flow Requirements

• Interpretation: let \(\text{confine}(x) = \{ x_L, x_U \} \), consider class \(y \)

 – Information can flow from \(x \) to element of \(y \) iff \(x_L \leq_R y \), or \(l_R(x_L) \subseteq h_R(y) \)

 – Information can flow from element of \(y \) to \(x \) iff \(y \leq_R x_U \), or \(l_R(y) \subseteq h_R(x_U) \)
Revisit Government Example

• Information flow policy is R
• Flow relationships among classes are:

 public \leq_R public
 public \leq_R analysis analysis \leq_R analysis
 public \leq_R covert covert \leq_R covert
 public \leq_R top-level covert \leq_R top-level
 analysis \leq_R top-level top-level \leq_R top-level
Dual Mapping of R

- Elements l_R, h_R:

 \[l_R(\text{public}) = \{ \text{public} \} \]
 \[h_R(\text{public}) = \{ \text{public} \} \]
 \[l_R(\text{analysis}) = \{ \text{analysis} \} \]
 \[h_R(\text{analysis}) = \{ \text{public, analysis} \} \]
 \[l_R(\text{covert}) = \{ \text{covert} \} \]
 \[h_R(\text{covert}) = \{ \text{public, covert} \} \]
 \[l_R(\text{top-level}) = \{ \text{top-level} \} \]
 \[h_R(\text{top-level}) = \{ \text{public, analysis, covert, top-level} \} \]
confine

• Let p be entity of type PRO, a of type A, s of type S

• In terms of P (not R), we get:

 $confine(p) = [\{ \text{public} \}, \{ \text{public, analysis} \}]$
 $confine(a) = [\{ \text{analysis} \}, \{ \text{public, analysis, covert, top-level} \}]$
 $confine(s) = [\{ \text{covert} \}, \{ \text{public, analysis, covert, top-level} \}]$
And the Flow Relations Are ...

- $p \rightarrow a$ as $l_R(p) \subseteq h_R(a)$
 - $l_R(p) = \{ \text{public} \}$
 - $h_R(a) = \{ \text{public, analysis, covert, top-level} \}$

- Similarly: $a \rightarrow p$, $p \rightarrow s$, $a \rightarrow s$, $s \rightarrow a$

- **But** $s \rightarrow p$ is **false** as $l_R(s) \not\subseteq h_R(p)$
 - $l_R(s) = \{ \text{covert} \}$
 - $h_R(p) = \{ \text{public, analysis} \}$
Analysis

- \((S_P, \leq_P)\) is a lattice, so it can be analyzed like a lattice policy
- Dual mapping preserves ordering, hence non-ordering and non-transitivity, of original policy
 - So results of analysis of \((S_P, \leq_P)\) can be mapped back into \((SC_R, \leq_R, join_R)\)
Compiler-Based Mechanisms

- Detect unauthorized information flows in a program during compilation
- Analysis not precise, but secure
 - If a flow *could* violate policy (but may not), it is unauthorized
 - No unauthorized path along which information could flow remains undetected
- Set of statements *certified* with respect to an information flow policy if the flows in the set of statements do not violate that policy
Example

if $x = 1$ then $y := a$;
else $y := b$;

• Info flows from x and a to y, or from x and b to y

• Certified only if $x \leq y$ and $a \leq y$ and $b \leq y$
 – Note flows for both branches must be true unless compiler can determine that one branch will never be taken
Declarations

• Notation:

\[x: \text{int class} \{ A, B \} \]

means \(x \) is an integer variable with security class at least \(\text{lub}\{ A, B \} \), so \(\text{lub}\{ A, B \} \leq x \)

• Distinguished classes \(Low, High \)
 – Constants are always \(Low \)
Input Parameters

• Parameters through which data passed into procedure
• Class of parameter is class of actual argument

\[i_p: \text{type class} \{ i_p \} \]
Output Parameters

- Parameters through which data passed out of procedure
 - If data passed in, called “input/output parameter”
- As information can flow from input parameters to output parameters, class must include this:
 \[o_p: \text{type class} \{ r_1, \ldots, r_n \} \]
 where \(r_i \) is class of \(i \)th input or input/output argument
Example

\[
\text{proc } \text{sum}(x: \text{ int class } \{ \text{ A } \});
\]
\[
\quad \text{var } \text{out}: \text{ int class } \{ \text{ A, B } \});
\]
\[
\text{begin}
\]
\[
\quad \text{out} := \text{out} + x;
\]
\[
\text{end};
\]
\[
\cdot \text{ Require } x \leq \text{out and out} \leq \text{out}
\]
Array Elements

• Information flowing out:
 \[\ldots := a[i] \]

Value of \(i \), \(a[i] \) both affect result, so class is \(\text{lub}\{ a[i], i \} \)

• Information flowing in:
 \[a[i] := \ldots \]

• Only value of \(a[i] \) affected, so class is \(a[i] \)
Assignment Statements

\[x := y + z; \]

- Information flows from \(y, z \) to \(x \), so this requires \(\text{lub}(y, z) \leq x \)

More generally:

\[y := f(x_1, \ldots, x_n) \]

- the relation \(\text{lub}(x_1, \ldots, x_n) \leq y \) must hold
Compound Statements

\[x := y + z; \quad a := b \times c - x; \]

- First statement: \(lub(y, z) \leq x \)
- Second statement: \(lub(b, c, x) \leq a \)
- So, both must hold (i.e., be secure)

More generally:

\[S_1; \ldots; S_n; \]

- Each individual \(S_i \) must be secure
Conditional Statements

\[
\text{if } x + y < z \text{ then } a := b \ \text{else} \ d := b \times c - x;
\]

- The statement executed reveals information about \(x, y, z\), so \(\text{lub}(x, y, z) \leq \text{glb}(a, d)\)

More generally:

\[
\text{if } f(x_1, \ldots, x_n) \text{ then } S_1 \ \text{else} \ S_2; \ \text{end}
\]

- \(S_1, S_2\) must be secure
- \(\text{lub}(x_1, \ldots, x_n) \leq \text{glb}(y \mid y \text{ target of assignment in } S_1, S_2)\)
Iterative Statements

\begin{verbatim}
while i < n do begin
 a[i] := b[i]; i := i + 1; end
\end{verbatim}

- Same ideas as for “if”, but must terminate

More generally:

\begin{verbatim}
while f(x_1, \ldots, x_n) do S;
\end{verbatim}

- Loop must terminate;
- S must be secure
- \(\text{lub}(\underline{x_1}, \ldots, \underline{x_n}) \leq \text{glb}(\underline{y} \mid y \text{ target of assignment in } S) \)
Goto Statements

• No assignments
 – Hence no explicit flows
• Need to detect implicit flows
• *Basic block* is sequence of statements that have one entry point and one exit point
 – Control in block *always* flows from entry point to exit point
Example Program

\[
\text{proc } \text{tm}(x: \text{array}[1..10][1..10] \text{ of int class } \{x\}; \\
 \text{ var } y: \text{array}[1..10][1..10] \text{ of int class } \{y\}); \\
\text{ var } i, j: \text{int} \{i\}; \\
\text{begin} \\
 b_1 \quad i := 1; \\
 b_2 \quad L2: \text{if } i > 10 \text{ then goto } L7; \\
 b_3 \quad j := 1; \\
 b_4 \quad L4: \text{if } j > 10 \text{ then goto } L6; \\
 b_5 \quad y[j][i] := x[i][j]; \quad j := j + 1; \quad \text{goto } L4; \\
 b_6 \quad L6: \quad i := i + 1; \quad \text{goto } L2; \\
 b_7 \quad L7: \\
\text{end};
\]
Flow of Control

\[b_1 \rightarrow b_2 \]
\[b_2 \rightarrow b_3 \]
\[b_2 \rightarrow b_6 \]
\[b_6 \rightarrow b_4 \]
\[b_4 \rightarrow b_5 \]
\[b_5 \rightarrow b_2 \]
\[b_3 \rightarrow b_7 \]

\[i \leq n \]
\[i > n \]
\[j \leq n \]
\[j > n \]
IFDs

• Idea: when two paths out of basic block, implicit flow occurs
 – Because information says \textit{which} path to take
• When paths converge, either:
 – Implicit flow becomes irrelevant; or
 – Implicit flow becomes explicit
• \textit{Immediate forward dominator} of a basic block \(b \)
 (written \(\text{IFD}(b) \)) is the first basic block lying on all
 paths of execution passing through \(b \)
IFD Example

• In previous procedure:
 – IFD(b_1) = b_2 one path
 – IFD(b_2) = b_7 $b_2 \rightarrow b_7$ or $b_2 \rightarrow b_3 \rightarrow b_6 \rightarrow b_2 \rightarrow b_7$
 – IFD(b_3) = b_4 one path
 – IFD(b_4) = b_6 $b_4 \rightarrow b_6$ or $b_4 \rightarrow b_5 \rightarrow b_6$
 – IFD(b_5) = b_4 one path
 – IFD(b_6) = b_2 one path
Requirements

- B_i is the set of basic blocks along an execution path from b_i to IFD(b_i)
 - Analogous to statements in conditional statement
- x_{i1}, \ldots, x_{in} variables in expression selecting which execution path containing basic blocks in B_i used
 - Analogous to conditional expression
- Requirements for being secure:
 - All statements in each basic blocks are secure
 - $\text{lub}(x_{i1}, \ldots, x_{in}) \leq \text{glb}\{ y \mid y \text{ target of assignment in } B_i \}$
Example of Requirements

- Within each basic block:
 \[
 b_1: Low \leq i \hspace{1cm} b_3: Low \leq j \hspace{1cm} b_6: \text{lub}\{Low, i\} \leq i
 \]
 \[
 b_5: \text{lub}(x[i][j], i, j) \leq y[j][i]; \text{lub}(Low, j) \leq j
 \]
 - Combining, \(\text{lub}(x[i][j], i, j) \leq y[j][i] \)
 - From declarations, true when \(\text{lub}(x, i) \leq y \)

- \(B_2 = \{b_3, b_4, b_5, b_6\} \)
 - Assignments to \(i, j, y[j][i] \); conditional is \(i \leq 10 \)
 - Requires \(i \leq \text{glb}(i, j, y[j][i]) \)
 - From declarations, true when \(i \leq y \)
Example (continued)

• $B_4 = \{ b_5 \}$

 – Assignments to $j, y[j][i]$; conditional is $j \leq 10$

 – Requires $j \leq \text{glb}(i, y[j][i])$

 – From declarations, means $i \leq y$

• Result:

 – Combine $\text{lub}(x, i) \leq y; i \leq y; i \leq y$

 – Requirement is $\text{lub}(x, i) \leq y$
Procedure Calls

\[tm(a, b); \]

From previous slides, to be secure, \(lub(x, i) \leq y \) must hold

- In call, \(x \) corresponds to \(a \), \(y \) to \(b \)
- Means that \(lub(a, i) \leq b \), or \(a \leq b \)

More generally:

\[
\text{proc } pn(i_1, \ldots, i_m: \text{int}; \text{ var } o_1, \ldots, o_n: \text{int})
\begin{align*}
\text{begin } S \text{ end;}
\end{align*}
\]

- \(S \) must be secure
- For all \(j \) and \(k \), if \(i_j \leq o_k \), then \(x_j \leq y_k \)
- For all \(j \) and \(k \), if \(o_j \leq o_k \), then \(y_j \leq y_k \)