March 6, 2014

1. Mitigation of Covert Channels
2. About Voting and Computers
Mitigation of Covert Channels

- Problem: these work by varying use of shared resources
- One solution
 - Require processes to say what resources they need before running
 - Provide access to them in a way that no other process can access them
- Cumbersome
 - Includes running (CPU covert channel)
 - Resources stay allocated for lifetime of process
Alternate Approach

- Obscure amount of resources being used
 - Receiver cannot distinguish between what the sender is using and what is added
- How? Two ways:
 - Devote uniform resources to each process
 - Inject randomness into allocation, use of resources
Uniformity

- Varieties of Isolation
 - Process can’t tell if second process using resource
- Example: KVM/370 covert channel via CPU usage
 - Devote uniform resources to each process
 - Give each VM a time slice of fixed duration
 - Do not allow VM to surrender its CPU time
 - Can no longer send 0 or 1 by modulating CPU usage
Randomness

- Make noise dominate channel
 - Does not close it, but makes it useless
- Example: MLS database
 - Probability of transaction being aborted by user other than sender, receiver approaches 1
 - $q \to 1$
 - $I(A; X) \to 0$
 - How to do this: resolve conflicts by aborting increases q, or have participants abort transactions randomly
Problem: Loss of Efficiency

- Fixed allocation, constraining use
 - Wastes resources
- Increasing probability of aborts
 - Some transactions that will normally commit now fail, requiring more retries
- Policy: is the inefficiency preferable to the covert channel?
Example

- **Goal**: limit covert timing channels on VAX/VMM
- “Fuzzy time” reduces accuracy of system clocks by generating random clock ticks
 - Random interrupts take any desired distribution
 - System clock updates only after each timer interrupt
 - Kernel rounds time to nearest 0.1 sec before giving it to VM
 - Means it cannot be more accurate than timing of interrupts
Example

- I/O operations have random delays
- Kernel distinguishes 2 kinds of time:
 - *Event time* when I/O event occurs
 - *Notification time* when VM told I/O event occurred
 - Random delay between these prevents VM from figuring out when event actually occurred
 - Delay can be randomly distributed as desired (in security kernel, it’s 1–19ms)
- Added enough noise to make covert timing channels hard to exploit
Improvement

- Modify scheduler to run processes in increasing order of security level
 - Now we’re worried about “reads up”, so …
- Countermeasures needed only when transition from dominating VM to dominated VM
 - Add random intervals between quanta for these transitions
The Pump

- Tool for controlling communications path between *High* and *Low*

![Diagram showing the Pump concept]
Details

- Communications buffer of length \(n \)
 - Means it can hold up to \(n \) messages
- Messages numbered
- Pump ACKs each message as it is moved from \textit{High} (\textit{Low}) buffer to communications buffer
- If pump crashes, communications buffer preserves messages
 - Processes using pump can recover from crash
Covert Channel

- Low fills communications buffer
 - Send messages to pump until no ACK
 - If High wants to send 1, it accepts 1 message from pump; if High wants to send 0, it does not
 - If Low gets ACK, message moved from Low buffer to communications buffer ⇒ High sent 1
 - If Low doesn’t get ACK, no message moved ⇒ High sent 0

- Meaning: if High can control rate at which pump passes messages to it, a covert timing channel
Performance vs. Capacity

- Assume Low process, pump can process messages more quickly than High process
- \(L_i \) random variable: time from Low sending message to pump to Low receiving ACK
- \(H_i \) random variable: average time for High to ACK each of last \(n \) messages
Case 1: $E(L_i) > H_i$

- \textit{High} can process messages more quickly than \textit{Low} can get ACKs
- Contradicts above assumption
 - Pump must be delaying ACKs
 - \textit{Low} waits for ACK whether or not communications buffer is full
- Covert channel closed
- Not optimal
 - Process may wait to send message even when there is room
Case 2: $E(L_i) < H_i$

- Low sending messages faster than High can remove them
- Covert channel open
- Optimal performance
Case 3: $E(L_i) = H_i$

- Pump, processes handle messages at same rate
- Covert channel open
 - Bandwidth decreased from optimal case (can’t send messages over covert channel as fast)
- Performance not optimal
Adding Noise

- Add noise to approximate case 3
 - Covert channel capacity reduced to $1/nr$ where r time from Low sending message to pump to Low receiving ACK when communications buffer not full
 - Conclusion: use of pump substantially reduces capacity of covert channel between High, Low processes when compared to direct connection
About Elections

Voters:

- In the U.S., states manage elections
- In some states, counties manage the elections locally
- Many different jurisdictions with many different rules
- Great commonality in rules, procedures among the different jurisdictions
How an Election Works in Yolo County, CA

Voters:

- Go to polling station
- Give name, get ballot
- Enter booth, vote using marker to mark ballot
- Put ballot in protective sleeve (envelope)
- Leave booth, drop envelope into ballot box
End of the Day

- Election officials take ballot box to County seat
- Election officials remove ballots from envelopes
 - If provisional, handled differently
- Ballots counted, put into bags marked with precinct and count
- Ballots removed from bag, run through automatic counters (scanners)
 - Humans intervene when problems arise
 - Intermediate tallies written onto flash cards
 - Every so often, cards removed, walked to tally computer
- Tallies periodically updated, given to web folks
The Canvass

Required by California law:

- Ballots for 1% of precincts counted by hand
 - Must include all races!
- Compare to tallies from election
 - If different, check until problem found
- Certify final counts to Secretary of State
 - ...within 28 days of the election

Actually, Yolo County also does more checking, including testing other proposed auditing methods with trusted researchers
Over- and Under-Votes

- Three seats open in Davis City Council election
- **Overvote**: voting too many times
 - Vote for 4 candidates
 - No votes in that race counted
- **Undervote**: voting too few times
 - Vote for 2 candidates
 - Both votes counted; no third vote counted
What's an "E-Voting System"?

- Intended to replace paper
 - Improve clarity of cast vote
 - Less error-prone to errors in counting
 - Easier to store

- Casting votes
 - Direct Recording Electronic (with or without VVPATs)
 - Ballot Marking Devices
 - Pens and paper

- Counting votes
 - Scanning at precinct (Precinct-Count Optical Scan)
 - Scanning at Election Central
 - Computer counting of electronic ballots
What Should It Do?

- **Summary:** replace technology used in election process with better technology
 - “Better” means that the technology improves some aspect of the election process

- **Examples**
 - Easier to program ballots than print ballots
 - Can handle multiple languages easily
 - Easier to tally than hand counting
Requirements for an Election

- Voter validation (authenticated, registered, has not yet voted)
- Ballot validation (voter uses right ballot, results of marking capture intent of voter)
- Voter privacy (no association between voter, ballot; includes voter showing others how he/she voted)
- Integrity of election (ballots not changed, vote tallied accurately)
Requirements for an Election

- Voting availability (voter must be able to vote, materials must be available)
- Voting reliability (voting mechanisms must work)
- Election transparency (audit election process, verify everything done right)
- Election manageability (process must be usable by those involved, including poll workers)