April 7: Safety Question

- Protection State Transitions
 - Commands
 - Conditional Commands
- Special Rights
 - Principle of Attenuation of Privilege
- Harrison-Ruzzo-Ullman result
 - Corollaries
General Case

- Answer: no

- Sketch of proof:
 Reduce halting problem to safety problem
 Turing Machine review:
 - Infinite tape in one direction
 - States K, symbols M; distinguished blank b
 - Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
 - Halting state is q_f; TM halts when it enters this state
Mapping

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>head</td>
</tr>
</tbody>
</table>

Current state is \(k \)

<table>
<thead>
<tr>
<th></th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>B</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>C</td>
<td>(k)</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>(s_4)</td>
<td></td>
<td></td>
<td>D</td>
<td>end</td>
</tr>
</tbody>
</table>
After $\delta(k, C) = (k_1, X, R)$ where k is the current state and k_1 the next state
\(\delta(k, C) = (k_1, X, R) \) at intermediate becomes

\[
\text{command } c_{k, C}(s_3, s_4)
\]

\[
\text{if } \text{own in } A[s_3, s_4] \text{ and } k \text{ in } A[s_3, s_3] \quad \text{and } C \text{ in } A[s_3, s_3]
\]

\[
\text{then}
\]

\[
\text{delete } k \text{ from } A[s_3, s_3];
\]

\[
\text{delete } C \text{ from } A[s_3, s_3];
\]

\[
\text{enter } X \text{ into } A[s_3, s_3];
\]

\[
\text{enter } k_1 \text{ into } A[s_4, s_4];
\]

\text{end}
After $\delta(k_1, D) = (k_2, Y, R)$ where k_1 is the current state and k_2 the next state.
Command Mapping

\[\delta(k_1, D) = (k_2, Y, R) \] at end becomes

\textbf{command} c\text{rightmost}_{k,c}(s_4, s_5)

\textbf{if} \text{ end in } A[s_4, s_4] \text{ and } k_1 \text{ in } A[s_4, s_4]

\text{and} \ D \text{ in } A[s_4, s_4]

\textbf{then}

\text{delete} \ \text{end from} \ A[s_4, s_4];

\text{delete} \ k_1 \ \text{from} \ A[s_4, s_4];

\text{delete} \ D \ \text{from} \ A[s_4, s_4];

\text{enter} \ Y \ \text{into} \ A[s_4, s_4];

\text{create subject} \ s_5;

\text{enter} \ own \ \text{into} \ A[s_4, s_5];

\text{enter} \ end \ \text{into} \ A[s_5, s_5];

\text{enter} \ k_2 \ \text{into} \ A[s_5, s_5];

\textbf{end}
Rest of Proof

• Protection system exactly simulates a TM
 – Exactly 1 end right in ACM
 – 1 right in entries corresponds to state
 – Thus, at most 1 applicable command

• If TM enters state q_f, then right has leaked

• If safety question decidable, then represent TM as above and determine if q_f leaks
 – Implies halting problem decidable

• Conclusion: safety question undecidable
Other Results

- Set of unsafe systems is recursively enumerable
- Delete `create` primitive; then safety question is complete in \(P\)-SPACE
- Delete `destroy`, `delete` primitives; then safety question is undecidable
 - Systems are monotonic
- Safety question for biconditional protection systems is decidable
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with `create`, `enter`, `delete` (and no `destroy`) is decidable.
Take-Grant Protection Model

- A specific (not generic) system
 - Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system
System

- objects (files, …)
- subjects (users, processes, …)
- don't care (either a subject or an object)

\[G \vdash_x G' \] apply a rewriting rule \(x \) (witness) to \(G \) to get \(G' \)

\[G \vdash^* G' \] apply a sequence of rewriting rules (witness) to \(G \) to get \(G' \)

\[R = \{ t, g, r, w, \ldots \} \] set of rights
Rules

take

\[t \alpha \]

grant

\[g \alpha \]
More Rules

create

\[\alpha \rightarrow \times \]

\[\vdash \alpha \rightarrow \times \]

remove

\[\alpha \rightarrow \times \]

\[\vdash \alpha - \beta \rightarrow \times \]

These four rules are called the *de jure* rules
Symmetry

1. x creates $(tg \text{ to new}) \, v$
2. z takes $(g \text{ to } v)$ from x
3. z grants $(\alpha \text{ to } y)$ to v
4. x takes $(\alpha \text{ to } y)$ from v

Similar result for grant
Islands

• tg-path: path of distinct vertices connected by edges labeled t or g
 – Call them “tg-connected”

• island: maximal tg-connected subject-only subgraph
 – Any right one vertex has can be shared with any other vertex
Initial, Terminal Spans

• *initial span* from \(x \) to \(y \)

 – \(x \) subject

 – \(tg \)-path between \(x, y \) with word in \{ \(t^*g \) \} \(\cup \) \{ \(\nu \) \}

 – Means \(x \) can give rights it has to \(y \)

• *terminal span* from \(x \) to \(y \)

 – \(x \) subject

 – \(tg \)-path between \(x, y \) with word in \{ \(t^* \) \} \(\cup \) \{ \(\nu \) \}

 – Means \(x \) can acquire any rights \(y \) has
• bridge: \(tg\)-path between subjects \(x, y\), with associated word in

\[
\left\{ \overrightarrow{t^*}, \overleftarrow{t^*}, \overrightarrow{t^*g} \overleftarrow{t^*}, \overrightarrow{t^*g} \overrightarrow{t^*} \right\}
\]

– rights can be transferred between the two endpoints

– *not* an island as intermediate vertices are objects
Example

- islands: \(\{ p, u \} \) \(\{ w \} \) \(\{ y, s' \} \)
- bridges: \(u, v, w; w, x, y \)
- initial span: \(p \) (associated word \(v \))
- terminal span: \(s' \)’s (associated word \(t' \))
can•share Predicate

Definition:

• \textit{can•share}(r, x, y, G_0) if, and only if, there is a sequence of protection graphs G_0, \ldots, G_n such that $G_0 \vdash_* G_n$ using only \textit{de jure} rules and in G_n there is an edge from x to y labeled r.
can•share Theorem

- **can•share**\((r, x, y, G_0)\) if, and only if, there is an edge from \(x\) to \(y\) labeled \(r\) in \(G_0\), or the following hold simultaneously:
 - There is an \(s\) in \(G_0\) with an \(s\)-to-\(y\) edge labeled \(r\)
 - There is a subject \(x' = x\) or initially spans to \(x\)
 - There is a subject \(s' = s\) or terminally spans to \(s\)
 - There are islands \(I_1, \ldots, I_k\) connected by bridges, and \(x'\) in \(I_1\) and \(s'\) in \(I_k\)
Outline of Proof

• s has r rights over y
• s' acquires r rights over y from s
 – Definition of terminal span
• x' acquires r rights over y from s'
 – Repeated application of sharing among vertices in islands, passing rights along bridges
• x' gives r rights over y to x
 – Definition of initial span
Example Interpretation

• ACM is generic
 – Can be applied in any situation

• Take-Grant has specific rules, rights
 – Can be applied in situations matching rules, rights

• Question: what states can evolve from a system that is modeled using the Take-Grant Model?
Take-Grant Generated Systems

- Theorem: G_0 protection graph with 1 vertex, no edges; R set of rights. Then $G_0 \vdash * G$ iff:
 - G finite directed graph consisting of subjects, objects, edges
 - Edges labeled from nonempty subsets of R
 - At least one vertex in G has no incoming edges
Outline of Proof

⇒: By construction; G final graph in theorem
- Let x_1, \ldots, x_n be subjects in G
- Let x_1 have no incoming edges

• Now construct G' as follows:
 1. Do "x_1 creates ($\alpha \cup \{ g \}$ to) new subject $x_i"$
 2. For all (x_i, x_j) where x_i has a rights over x_j, do
 "x_1 grants (α to x_j) to $x_i"$
 3. Let β be rights x_i has over x_j in G. Do
 "x_1 removes (($\alpha \cup \{ g \}$ – β to) $x_j"$

• Now G' is desired G
Outline of Proof

⇐: Let v be initial subject, and $G_0 \vdash^* G$

• Inspection of rules gives:
 – G is finite
 – G is a directed graph
 – Subjects and objects only
 – All edges labeled with nonempty subsets of R

• Limits of rules:
 – None allow vertices to be deleted so v in G
 – None add incoming edges to vertices without incoming edges, so v has no incoming edges
Example: Shared Buffer

- Goal: \(p, q \) to communicate through shared buffer \(b \) controlled by trusted entity \(s \)
 1. \(s \) creates (\(\{r, w\} \) to new object) \(b \)
 2. \(s \) grants (\(\{r, w\} \) to \(b \)) to \(p \)
 3. \(s \) grants (\(\{r, w\} \) to \(b \)) to \(q \)
Key Question

• Characterize class of models for which safety is decidable
 – Existence: Take-Grant Protection Model is a member of such a class
 – Universality: In general, question undecidable, so for some models it is not decidable

• What is the dividing line?
Schematic Protection Model

• Type-based model
 – Protection type: entity label determining how control rights affect the entity
 • Set at creation and cannot be changed
 – Ticket: description of a single right over an entity
 • Entity has sets of tickets (called a domain)
 • Ticket is X/r, where X is entity and r right
 – Functions determine rights transfer
 • Link: are source, target “connected”?
 • Filter: is transfer of ticket authorized?
Link Predicate

• Idea: $\text{link}_i(X, Y)$ if X can assert some control right over Y

• Conjunction of disjunction of:
 – $X/z \in \text{dom}(X)$
 – $X/z \in \text{dom}(Y)$
 – $Y/z \in \text{dom}(X)$
 – $Y/z \in \text{dom}(Y)$
 – true
Examples

- **Take-Grant:**
 \[
 \text{link}(X, Y) = Y/g \in \text{dom}(X) \lor X/t \in \text{dom}(Y)
 \]

- **Broadcast:**
 \[
 \text{link}(X, Y) = X/b \in \text{dom}(X)
 \]

- **Pull:**
 \[
 \text{link}(X, Y) = Y/p \in \text{dom}(Y)
 \]
Filter Function

- Range is set of copyable tickets
 - Entity type, right
- Domain is subject pairs
- Copy a ticket $X/r:c$ from $\text{dom}(Y)$ to $\text{dom}(Z)$
 - $X/rc \in \text{dom}(Y)$
 - $\text{link}_i(Y, Z)$
 - $\tau(Y)/r:c \in f_i(\tau(Y), \tau(Z))$
- One filter function per link function
Example

- \(f(\tau(Y), \tau(Z)) = T \times R \)
 - Any ticket can be transferred (if other conditions met)

- \(f(\tau(Y), \tau(Z)) = T \times RI \)
 - Only tickets with inert rights can be transferred (if other conditions met)

- \(f(\tau(Y), \tau(Z)) = \emptyset \)
 - No tickets can be transferred
Example

• Take-Grant Protection Model

 – $TS = \{ \text{subjects} \}$, $TO = \{ \text{objects} \}$

 – $RC = \{ tc, gc \}$, $RI = \{ rc, wc \}$

 – $\text{link}(p, q) = p/t \in \text{dom}(q) \vee q/g \in \text{dom}(p)$

 – $f(\text{subject, subject}) = \{ \text{subject, object} \} \times \{ tc, gc, rc, wc \}$