
April 10: Expressiveness
•  SPM and safety
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Create Operation

•  Must handle type, tickets of new entity
•  Relation cc(a, b) [cc for can-create]

– Subject of type a can create entity of type b
•  Rule of acyclic creates: 

a b

c d

a b

c d
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Types

•  cr(a, b): tickets created when subject of type 
a creates entity of type b [cr for create-rule]

•  B object: cr(a, b) ⊆ { b/r:c ∈ RI }
– A gets B/r:c iff b/r:c ∈ cr(a, b)

•  B subject: cr(a, b) has two subsets
–  crP(a, b) added to A, crC(a, b) added to B
– A gets B/r:c if b/r:c ∈ crP(a, b)
– B gets A/r:c if a/r:c ∈ crC(a, b)
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Non-Distinct Types

cr(a, a): who gets what?
•  self/r:c are tickets for creator
•  a/r:c tickets for created
cr(a, a) = { a/r:c, self/r:c | r:c ∈ R}
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Attenuating Create Rule

cr(a, b) attenuating if:
1.   crC(a, b) ⊆ crP(a, b) and
2.   a/r:c ∈ crP(a, b) ⇒ self/r:c ∈ crP(a, b)
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Example: Owner-Based Policy

•  Users can create files, creator can give itself any 
inert rights over file
–  cc = {  ( user ,  file ) }
–  cr(user, file) = { file/r:c | r ∈ RI }

•  Attenuating, as graph is acyclic, loop free

owner file
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Example: Take-Grant
•  Say subjects create subjects (type s), objects (type o), but 

get only inert rights over latter
–  cc = { ( s, s ), ( s, o ) }
–  crC(a, b) = ∅
–  crP(s, s) = {s/tc, s/gc, s/rc, s/wc }
–  crP(s, o) = {s/rc, s/wc }

•  Not attenuating, as no self tickets provided; subject creates 
subject

subject object
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Safety Analysis

•  Goal: identify types of policies with 
tractable safety analyses

•  Approach: derive a state in which additional 
entries, rights do not affect the analysis; 
then analyze this state
– Called a maximal state
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Definitions

•  System begins at initial state
•  Authorized operation causes legal transition
•  Sequence of legal transitions moves system 

into final state
– This sequence is a history
– Final state is derivable from history, initial state
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More Definitions

•  States represented by h

•  Set of subjects SUBh, entities ENTh

•  Link relation in context of state h is linkh

•  Dom relation in context of state h is domh
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pathh(X,Y)

•  X, Y connected by one link or a sequence of 
links

•  Formally, either of these hold:
–  for some i, linki

h(X, Y); or
–  there is a sequence of subjects X0, …, Xn such 

that linki
h(X, X0), linki

h(Xn,Y), and for k = 1, 
…, n, linki

h(Xk–1, Xk)
•  If multiple such paths, refer to pathj

h(X, Y)
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Capacity cap(pathh(X,Y))

•  Set of tickets that can flow over pathh(X,Y)
–  If linki

h(X,Y): set of tickets that can be copied 
over the link (i.e., fi(τ(X), τ(Y)))

– Otherwise, set of tickets that can be copied over 
all links in the sequence of links making up the 
pathh(X,Y)

•  Note: all tickets (except those for the final 
link) must be copyable
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Flow Function

•  Idea: capture flow of tickets around a given 
state of the system

•  Let there be m pathhs between subjects X 
and Y in state h. Then flow function

flowh: SUBh × SUBh → 2T×R

is:
flowh(X,Y) = ∪i=1,…,m cap(pathi

h(X,Y))
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Properties of Maximal State

•  Maximizes flow between all pairs of subjects
–  State is called *
–  Ticket in flow*(X,Y) means there exists a sequence of 

operations that can copy the ticket from X to Y
•  Questions

–  Is maximal state unique?
–  Does every system have one?
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Formal Definition
•  Definition: g ≤0 h holds iff for all X, Y ∈ SUB0, 

flowg(X,Y) ⊆ flowh(X,Y).
–  Note: if g ≤0 h and h ≤0 g, then g, h equivalent
–  Defines set of equivalence classes on set of derivable 

states
•  Definition: for a given system, state m is maximal 

iff h ≤0 m for every derivable state h
•  Intuition: flow function contains all tickets that 

can be transferred from one subject to another
–  All maximal states in same equivalence class
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Maximal States

•  Lemma. Given arbitrary finite set of states 
H, there exists a derivable state m such that 
for all h ∈ H, h ≤0 m

•  Outline of proof: induction
– Basis: H = ∅; trivially true
– Step: |Hʹ| = n + 1, where Hʹ = G ∪ {h}. By IH, 

there is a g ∈ G such that x ≤0 g for all x ∈ G.
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Outline of Proof
•  M interleaving histories of g, h which:

–  Preserves relative order of transitions in g, h
–  Omits second create operation if duplicated

•  M ends up at state m
•  If pathg(X,Y) for X, Y ∈ SUBg, pathm(X,Y)

–  So g ≤0 m
•  If pathh(X,Y) for X, Y ∈ SUBh, pathm(X,Y)

–  So h ≤0 m
•  Hence m maximal state in Hʹ
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Answer to Second Question

•  Theorem: every system has a maximal state *
•  Outline of proof: K is set of derivable states 

containing exactly one state from each 
equivalence class of derivable states
–  Consider X, Y in SUB0. Flow function’s range is 2T×R, 

so can take at most 2|T×R| values. As there are |SUB0|2 
pairs of subjects in SUB0, at most 2|T×R| |SUB0|2 distinct 
equivalence classes; so K is finite

•  Result follows from lemma
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Safety Question

•  In this model:
Is it possible to have a derivable state with X/
r:c in dom(A), or does there exist a subject B 
with ticket X/rc in the initial state or which can 
demand X/rc and τ(X)/r:c in flow*(B,A)?

•  To answer: construct maximal state and test
– Consider acyclic attenuating schemes; how do 

we construct maximal state?
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Intuition
•  Consider state h.
•  State u corresponds to h but with minimal number 

of new entities created such that maximal state m 
can be derived with no create operations
–  So if in history from h to m, subject X creates two 

entities of type a, in u only one would be created; 
surrogate for both

•  m can be derived from u in polynomial time, so if 
u can be created by adding a finite number of 
subjects to h, safety question decidable.
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Fully Unfolded State
•  State u derived from state 0 as follows:

–  delete all loops in cc; new relation ccʹ
–  mark all subjects as folded
–  while any X ∈ SUB0 is folded

•  mark it unfolded
•  if X can create entity Y of type y, it does so (call this the y-

surrogate of X); if entity Y ∈ SUBg, mark it folded
–  if any subject in state h can create an entity of its own 

type, do so
•  Now in state u
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Termination
•  First loop terminates as SUB0 finite
•  Second loop terminates:

–  Each subject in SUB0 can create at most | TS | children, 
and | TS | is finite

–  Each folded subject in | SUBi | can create at most
    | TS | – i children
–  When i = | TS |, subject cannot create more children; 

thus, folded is finite
–  Each loop removes one element

•  Third loop terminates as SUBh is finite
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Surrogate
•  Intuition: surrogate collapses multiple subjects of 

same type into single subject that acts for all of 
them

•  Definition: given initial state 0, for every derivable 
state h define surrogate function σ:ENTh→ENTh 
by:
–  if X in ENT0, then σ(X) = X
–  if Y creates X and τ(Y) = τ(X), then σ(X) = σ(Y)
–  if Y creates X and τ(Y) ≠ τ(X), then σ(X) = τ(Y)-

surrogate of σ(Y)
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Implications
•  τ(σ(X)) = τ(X)
•  If τ(X) = τ(Y), then σ(X) = σ(Y)
•  If τ(X) ≠ τ(Y), then

–  σ(X) creates σ(Y) in the construction of u
–  σ(X) creates entities Xʹ of type τ(Xʹ) = τ(σ(X))

•  From these, for a system with an acyclic 
attenuating scheme, if X creates Y, then tickets 
that would be introduced by pretending that σ(X) 
creates σ(Y) are in domu(σ(X)) and domu(σ(Y))
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Deriving Maximal State

•  Idea
– Reorder operations so that all creates come first 

and replace history with equivalent one using 
surrogates

– Show maximal state of new history is also that 
of original history

– Show maximal state can be derived from initial 
state
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Reordering

•  H legal history deriving state h from state 0
•  Order operations: first create, then demand, then 

copy operations
•  Build new history G from H as follows:

–  Delete all creates
–  “X demands Y/r:c” becomes “σ(X) demands σ(Y)/r:c”
–  “Y copies X /r:c from Y” becomes “σ(Y) copies          
σ(X)/r:c from σ(Y)”
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Tickets in Parallel

•  Theorem
– All transitions in G legal; if X/r:c ∈ domh(Y), 

then σ(X)/r:c ∈ domh(σ(Y))
•  Outline of proof: induct on number of copy 

operations in H
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Basis
•  H has create, demand only; so G has demand only. 

s preserves type, so by construction every demand 
operation in G legal.

•  3 ways for X/r:c to be in domh(Y):
–  X/r:c ∈ dom0(Y) means X, Y ∈ ENT0, so trivially        
σ(X)/r:c ∈ domg(σ(Y)) holds

–  A create added X/r:c ∈ domh(Y): previous lemma says 
σ(X)/r:c ∈ domg(σ(Y)) holds

–  A demand added X/r:c ∈ domh(Y): corresponding 
demand operation in G gives σ(X)/r:c ∈ domg(σ(Y))
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Hypothesis

•  Claim holds for all histories with k copy 
operations

•  History H has k+1 copy operations
– Hʹ initial sequence of H composed of k copy 

operations
–  hʹ state derived from Hʹ
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Step

•  Gʹ sequence of modified operations 
corresponding to Hʹ; gʹ derived state
– Gʹ legal history by hypothesis

•  Final operation is “Z copied X/r:c from Y”
– So h, hʹ differ by at most X/r:c ∈ domh(Z)
– Construction of G means final operation is
σ(X)/r:c ∈ domg(σ(Y))

•  Proves second part of claim

April 10, 2017 ECS 235B Spring Quarter 2017 Slide #30



Step
•  Hʹ legal, so for H to be legal, we have:

1.   X/rc ∈ domhʹ(Y)
2.   linki

hʹ(Y, Z)
3.   τ(X/r:c) ∈ fi(τ(Y), τ(Z))

•  By IH, 1, 2, as X/r:c ∈ domhʹ(Y),
σ(X)/r:c ∈ domgʹ (σ(Y)) and linki

gʹ(σ(Y), σ(Z))
•  As σ preserves type, IH and 3 imply

τ(σ(X)/r:c) ∈ fi(τ((σ(Y)), τ(σ(Z)))
•  IH says Gʹ legal, so G is legal
April 10, 2017 ECS 235B Spring Quarter 2017 Slide #31



Corollary

•  If linki
h(X, Y), then linki

g(σ(X), σ(Y))
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Main Theorem
•  System has acyclic attenuating scheme
•  For every history H deriving state h from initial 

state, there is a history G without create operations 
that derives g from the fully unfolded state u such 
that

(∀X,Y ∈ SUBh)[flowh(X, Y) ⊆ flowg(σ(X), σ(Y))]
•  Meaning: any history derived from an initial 

statecan be simulated by corresponding history 
applied to the fully unfolded state derived from the 
initial state
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Proof

•  Outline of proof: show that every 
pathh(X,Y) has corresponding pathg(σ(X), 
σ(Y)) such that cap(pathh(X,Y)) = 
cap(pathg(σ(X), σ(Y)))
– Then corresponding sets of tickets flow through 

systems derived from H and G
– As initial states correspond, so do those 

systems
•  Proof by induction on number of links
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Basis and Hypothesis

•  Length of pathh(X, Y) = 1. By definition of 
pathh, linki

h(X, Y), hence linki
g(σ(X), σ(Y)). 

As σ preserves type, this means
cap(pathh(X, Y)) = cap(pathg(σ(X), σ(Y)))

•  Now assume this is true when pathh(X, Y) 
has length k
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Step

•  Let pathh(X, Y) have length k+1. Then there is a Z 
such that pathh(X, Z) has length k and linkj

h(Z, Y).
•  By IH, there is a pathg(σ(X), σ(Z)) with same 

capacity as pathh(X, Z)
•  By corollary, linkj

g(σ(Z), σ(Y))
•  As σ preserves type, there is pathg(σ(X), σ(Y)) 

with
cap(pathh(X, Y)) = cap(pathg(σ(X), σ(Y)))
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Implication

•  Let maximal state corresponding to v be #u
–  Deriving history has no creates
–  By theorem,

(∀X,Y ∈ SUBh)[flowh(X, Y) ⊆ flow#u(σ(X), σ(Y))]
–  If X ∈ SUB0, σ(X) = X, so:

(∀X,Y ∈ SUB0)[flowh(X, Y) ⊆ flow#u(X, Y)]

•  So #u is maximal state for system with acyclic attenuating 
scheme
–  #u derivable from u in time polynomial to |SUBu|
–  Worst case computation for flow#u is exponential in |TS|
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Safety Result

•  If the scheme is acyclic and attenuating, the 
safety question is decidable
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