April 12: Expressiveness and Policy

- Expressiveness
 - Multiparent create
- Policies
- Trust
- Nature of Security Mechanisms
- Policy Expression Languages
- Limits on Secure and Precise Mechanisms
Expressive Power

• How do the sets of systems that models can describe compare?
 – If HRU equivalent to SPM, SPM provides more specific answer to safety question
 – If HRU describes more systems, SPM applies only to the systems it can describe
HRU vs. SPM

• SPM more abstract
 – Analyses focus on limits of model, not details of representation

• HRU allows revocation
 – SPM has no equivalent to delete, destroy

• HRU allows multiparent creates
 – SPM cannot express multiparent creates easily, and not at all if the parents are of different types because `can•create` allows for only one type of creator
Multiparent Create

• Solves mutual suspicion problem
 – Create proxy jointly, each gives it needed rights

• In HRU:

 \begin{verbatim}
 command multicreate(s_0, s_1, o)
 if r in a[s_0, s_1] and r in a[s_1, s_0]
 then
 create object o;
 enter r into a[s_0, o];
 enter r into a[s_1, o];
 end
 \end{verbatim}
SPM and Multiparent Create

- cc extended in obvious way
 - $cc \subseteq TS \times \ldots \times TS \times T$

- Symbols
 - X_1, \ldots, X_n parents, Y created
 - $R_{1,i}, R_{2,i}, R_3, R_{4,i} \subseteq R$

- Rules
 - $cr_{P,i}(\tau(X_1), \ldots, \tau(X_n)) = Y/R_{1,1} \cup X_i/R_{2,i}$
 - $cr_{C}(\tau(X_1), \ldots, \tau(X_n)) = Y/R_3 \cup X_1/R_{4,1} \cup \ldots \cup X_n/R_{4,n}$
Example

• Anna, Bill must do something cooperatively
 – But they don’t trust each other

• Jointly create a proxy
 – Each gives proxy only necessary rights

• In ESPM:
 – Anna, Bill type a; proxy type p; right $x \in R$
 – $cc(a, a) = p$
 – $cr_{\text{Anna}}(a, a, p) = cr_{\text{Bill}}(a, a, p) = \emptyset$
 – $cr_{\text{proxy}}(a, a, p) = \{ \text{Anna}/x, \text{Bill}/\text{other } x \}$
2-Parent Joint Create Suffices

- Goal: emulate 3-parent joint create with 2-parent joint create
- Definition of 3-parent joint create (subjects \(P_1, P_2, P_3\); child \(C\)):
 - \(cc(\tau(P_1), \tau(P_2), \tau(P_3)) = Z \subseteq T\)
 - \(cr_{P_1}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{1,1} \cup P_1/R_{2,1}\)
 - \(cr_{P_2}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{2,1} \cup P_2/R_{2,2}\)
 - \(cr_{P_3}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{3,1} \cup P_3/R_{2,3}\)
General Approach

• Define agents for parents and child
 – Agents act as surrogates for parents
 – If create fails, parents have no extra rights
 – If create succeeds, parents, child have exactly same rights as in 3-parent creates
 • Only extra rights are to agents (which are never used again, and so these rights are irrelevant)
Entities and Types

- Parents P_1, P_2, P_3 have types p_1, p_2, p_3
- Child C of type c
- Parent agents A_1, A_2, A_3 of types a_1, a_2, a_3
- Child agent S of type s
- Type t is parentage
 - if $X/t \in \text{dom}(Y)$, X is Y’s parent
- Types t, a_1, a_2, a_3, s are new types
can • create

- Following added to can • create:
 - $cc(p_1) = a_1$
 - $cc(p_2, a_1) = a_2$
 - $cc(p_3, a_2) = a_3$
 - Parents creating their agents; note agents have maximum of 2 parents
 - $cc(a_3) = s$
 - Agent of all parents creates agent of child
 - $cc(s) = c$
 - Agent of child creates child
Creation Rules

- Following added to create rule:
 - \(cr_P(p_1, a_1) = \emptyset \)
 - \(cr_C(p_1, a_1) = p_1/Rtc \)
 - Agent’s parent set to creating parent; agent has all rights over parent
 - \(cr_{P_{\text{first}}}(p_2, a_1, a_2) = \emptyset \)
 - \(cr_{P_{\text{second}}}(p_2, a_1, a_2) = \emptyset \)
 - \(cr_C(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc \)
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
Creation Rules

- \(cr_{p_{\text{first}}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_{p_{\text{second}}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_{C}(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc \)
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- \(cr_{p}(a_3, s) = \emptyset \)
- \(cr_{C}(a_3, s) = a_3/tc \)
 - Child’s agent has third agent as parent \(cr_{p}(a_3, s) = \emptyset \)
- \(cr_{p}(s, c) = C/Rtc \)
- \(cr_{C}(s, c) = c/R_3 t \)
 - Child’s agent gets full rights over child; child gets \(R_3 \) rights over agent
Link Predicates

- Idea: no tickets to parents until child created
 - Done by requiring each agent to have its own parent rights
 - $\text{link}_1(A_2, A_1) = A_1/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2)$
 - $\text{link}_1(A_3, A_2) = A_2/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3)$
 - $\text{link}_2(S, A_3) = A_3/t \in \text{dom}(S) \land C/t \in \text{dom}(C)$
 - $\text{link}_3(A_1, C) = C/t \in \text{dom}(A_1)$
 - $\text{link}_3(A_2, C) = C/t \in \text{dom}(A_2)$
 - $\text{link}_3(A_3, C) = C/t \in \text{dom}(A_3)$
 - $\text{link}_4(A_1, P_1) = P_1/t \in \text{dom}(A_1) \land A_1/t \in \text{dom}(A_1)$
 - $\text{link}_4(A_2, P_2) = P_2/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2)$
 - $\text{link}_4(A_3, P_3) = P_3/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3)$
Filter Functions

• \(f_1(a_2, a_1) = a_1/t \cup c/Rtc \)
• \(f_1(a_3, a_2) = a_2/t \cup c/Rtc \)
• \(f_2(s, a_3) = a_3/t \cup c/Rtc \)
• \(f_3(a_1, c) = p_1/R_{4,1} \)
• \(f_3(a_2, c) = p_2/R_{4,2} \)
• \(f_3(a_3, c) = p_3/R_{4,3} \)
• \(f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1} \)
• \(f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2} \)
• \(f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3} \)
Construction

Create A_1, A_2, A_3, S, C; then

- P_1 has no relevant tickets
- P_2 has no relevant tickets
- P_3 has no relevant tickets
- A_1 has P_1/Rtc
- A_2 has $P_2/Rtc \cup A_1/tc$
- A_3 has $P_3/Rtc \cup A_2/tc$
- S has $A_3/tc \cup C/Rtc$
- C has C/R_3t
Construction

• Only \(\text{link}_2(S, A_3) \) true ⇒ apply \(f_2 \)
 – \(A_3 \) has \(P_3/Rtc \cup A_2/t \cup A_3/t \cup C/Rtc \)

• Now \(\text{link}_1(A_3, A_2) \) true ⇒ apply \(f_1 \)
 – \(A_2 \) has \(P_2/Rtc \cup A_1/tc \cup A_2/t \cup C/Rtc \)

• Now \(\text{link}_1(A_2, A_1) \) true ⇒ apply \(f_1 \)
 – \(A_1 \) has \(P_2/Rtc \cup A_1/t \cup C/Rtc \)

• Now all \(\text{link}_3s \) true ⇒ apply \(f_3 \)
 – \(C \) has \(C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3} \)
Finish Construction

• Now \(\text{link}_4 \) is true \(\Rightarrow \) apply \(f_4 \)

 – \(P_1 \) has \(C/R_{1,1} \cup P_1/R_{2,1} \)

 – \(P_2 \) has \(C/R_{1,2} \cup P_2/R_{2,2} \)

 – \(P_3 \) has \(C/R_{1,3} \cup P_3/R_{2,3} \)

• 3-parent joint create gives same rights to \(P_1, P_2, P_3, C \)

• If create of \(C \) fails, \(\text{link}_2 \) fails, so construction fails
Theorem

- The two-parent joint creation operation can implement an n-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.
- **Proof**: by construction, as above
 - Difference is that the two systems need not start at the same initial state
Theorems

- Monotonic ESPM and the monotonic HRU model are equivalent.
- Safety question in ESPM also decidable if acyclic attenuating scheme
 - Proof similar to that for SPM
Expressiveness

- Graph-based representation to compare models
- Graph
 - Vertex: represents entity, has static type
 - Edge: represents right, has static type
- Graph rewriting rules:
 - Initial state operations create graph in a particular state
 - Node creation operations add nodes, incoming edges
 - Edge adding operations add new edges between existing vertices
Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes P_1, P_2, P_3 parents
 - Create node C with type c with edges of type e
 - Add node A_1 of type a and edge from P_1 to A_1 of type e'
Next Step

• A_1, P_2 create A_2; A_2, P_3 create A_3
• Type of nodes, edges are a and e'

![Diagram](attachment:image.png)
Next Step

• A_3 creates S, of type a
• S creates C, of type c
Last Step

- Edge adding operations:
 - $P_1 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_1 to C edge type e
 - $P_2 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_2 to C edge type e
 - $P_3 \rightarrow A_3 \rightarrow S \rightarrow C$: P_3 to C edge type e
Definitions

• Scheme: graph representation as above
• Model: set of schemes
• Schemes A, B correspond if graph for both is identical when all nodes with types not in A and edges with types in A are deleted
Example

- Above 2-parent joint creation simulation in scheme *TWO*
- Equivalent to 3-parent joint creation scheme *THREE* in which P_1, P_2, P_3, C are of same type as in *TWO*, and edges from P_1, P_2, P_3 to C are of type e, and no types a and e' exist in *TWO*
Simulation

Scheme A simulates scheme B iff

- every state B can reach has a corresponding state in A that A can reach; and
- every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach

 - The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of $THREE$
Expressive Power

- If there is a scheme in MA that no scheme in MB can simulate, MB less expressive than MA
- If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA
- If MA as expressive as MB and vice versa, MA and MB equivalent
Example

• Scheme A in model M
 – Nodes X_1, X_2, X_3
 – 2-parent joint create
 – 1 node type, 1 edge type
 – No edge adding operations
 – Initial state: X_1, X_2, X_3, no edges

• Scheme B in model N
 – All same as A except no 2-parent joint create
 – 1-parent create

• Which is more expressive?
Can A Simulate B?

- Scheme A simulates 1-parent create: have both parents be same node
 - Model M as expressive as model N
Can B Simulate A?

- Suppose X_1, X_2 jointly create Y in A
 - Edges from X_1, X_2 to Y, no edge from X_3 to Y
- Can B simulate this?
 - Without loss of generality, X_1 creates Y
 - Must have edge adding operation to add edge from X_2 to Y
 - One type of node, one type of edge, so operation can add edge between any 2 nodes
No

- All nodes in A have even number of incoming edges
 - 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from X_2 to C can add one from X_3 to C
 - A cannot enter this state
 - B cannot transition to a state in which Y has even number of incoming edges
 - No remove rule
- So B cannot simulate A; N less expressive than M
Theorem

• Monotonic single-parent models are less expressive than monotonic multiparent models

• Proof by contradiction
 – Scheme A is multiparent model
 – Scheme B is single parent create
 – Claim: B can simulate A, without assumption that they start in the same initial state
 • Note: example assumed same initial state
Outline of Proof

• X_1, X_2 nodes in A
 - They create Y_1, Y_2, Y_3 using multiparent create rule
 - Y_1, Y_2 create Z, again using multiparent create rule
 - *Note*: no edge from Y_3 to Z can be added, as A has no edge-adding operation
Outline of Proof

- W, X_1, X_2 nodes in B
 - W creates Y_1, Y_2, Y_3 using single parent create rule, and adds edges for X_1, X_2 to all using edge adding rule
 - Y_1 creates Z, again using single parent create rule; now must add edge from X_2 to Z to simulate A
 - Use same edge adding rule to add edge from Y_3 to Z: cannot duplicate this in scheme A!
Meaning

• Scheme B cannot simulate scheme A, contradicting hypothesis
• ESPM more expressive than SPM
 – ESPM multiparent and monotonic
 – SPM monotonic but single parent
Typed Access Matrix Model

• Like ACM, but with set of types T
 – All subjects, objects have types
 – Set of types for subjects TS

• Protection state is (S, O, τ, A)
 – $\tau: O \rightarrow T$ specifies type of each object
 – If X subject, $\tau(X)$ in TS
 – If X object, $\tau(X)$ in $T - TS$
Create Rules

- **Subject creation**
 - create subject s of type ts
 - s must not exist as subject or object when operation executed
 - $ts \in TS$

- **Object creation**
 - create object o of type to
 - o must not exist as subject or object when operation executed
 - $to \in T - TS$
Create Subject

• Precondition: $s \notin S$
• Primitive command: create subject s of type t
• Postconditions:
 - $S' = S \cup \{s\}$, $O' = O \cup \{s\}$
 - $(\forall y \in O)[\tau'(y) = \tau(y)]$, $\tau'(s) = t$
 - $(\forall y \in O')[a'[s, y] = \emptyset]$, $(\forall x \in S')[a'[x, s] = \emptyset]$
 - $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$
Create Object

- Precondition: $o \notin O$
- Primitive command: create object o of type t
- Postconditions:
 - $S' = S$, $O' = O \cup \{ o \}$
 - $(\forall y \in O)[\tau'(y) = \tau(y)]$, $\tau'(o) = t$
 - $(\forall x \in S')[a'[x, o] = \emptyset]$
 - $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$
Definitions

- MTAM Model: TAM model without *delete*, *destroy*
 - MTAM is Monotonic TAM
- $\alpha(x_1:t_1, \ldots, x_n:t_n)$ create command
 - t_i child type in α if any of *create subject* x_i *of type* t_i or *create object* x_i *of type* t_i occur in α
 - t_i parent type otherwise
Cyclic Creates

command $cry•havoc(s_1 : u, s_2 : u, o_1 : v, o_2 : v, o_3 : w, o_4 : w)$

create subject s_1 of type u;
create object o_1 of type v;
create object o_3 of type w;

enter r into $a[s_2, s_1]$;
enter r into $a[s_2, o_2]$;
enter r into $a[s_2, o_4]$

end
Creation Graph

- u, v, w child types
- u, v, w also parent types
- Graph: lines from parent types to child types
- This one has cycles
Acyclic Creates

command cry\textcdot havoc\((s_1 : u, s_2 : u, o_1 : v, o_3 : w)\)

- create object \(o_1\) of type \(v\);
- create object \(o_3\) of type \(w\);
- enter \(r\) into \(a[s_2, s_1]\);
- enter \(r\) into \(a[s_2, o_1]\);
- enter \(r\) into \(a[s_2, o_3]\)

end
Creation Graph

- \(u \), \(w \) child types
- \(u \) parent type
- Graph: lines from parent types to child types
- This one has no cycles
Theorems

- Safety decidable for systems with acyclic MTAM schemes
 - In fact, it’s *NP-hard*

- Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 - “Ternary” means commands have no more than 3 parameters
 - Equivalent in expressive power to MTAM
Key Points

• Safety problem undecidable
• Limiting scope of systems can make problem decidable
• Types critical to safety problem’s analysis
Security Policy

• Policy partitions system states into:
 – Authorized (secure)
 • These are states the system can enter
 – Unauthorized (nonsecure)
 • If the system enters any of these states, it’s a security violation

• Secure system
 – Starts in authorized state
 – Never enters unauthorized state
Confidentiality

- X set of entities, I information
- I has the *confidentiality* property with respect to X if no $x \in X$ can obtain information from I
- I can be disclosed to others
- Example:
 - X set of students
 - I final exam answer key
 - I is confidential with respect to X if students cannot obtain final exam answer key
Integrity

- X set of entities, I information
- I has the \textit{integrity} property with respect to X if all $x \in X$ trust information in I
- Types of integrity:
 - Trust I, its conveyance and protection (data integrity)
 - I information about origin of something or an identity (origin integrity, authentication)
 - I resource: means resource functions as it should (assurance)
Availability

• X set of entities, I resource
• I has the *availability* property with respect to X if all $x \in X$ can access I
• Types of availability:
 – Traditional: x gets access or not
 – Quality of service: promised a level of access (for example, a specific level of bandwidth) and not meet it, even though some access is achieved