April 21: Bell-LaPadula Model

- Bell-LaPadula confidentiality model
- Tranquility
- Declassification
- McLean’s criticism and System Z
Rule

- \(\rho: R \times V \rightarrow D \times V \)
- Takes a state and a request, returns a decision and a (possibly new) state
- Rule \(\rho \) *ssc-preserving* if for all \((r, v) \in R \times V\) and \(v\) satisfying \(ssc \ rel f\), \(\rho(r, v) = (d, v')\) means that \(v'\) satisfies \(ssc \ rel f'\).
 - Similar definitions for \(*\)-property, ds-property
 - If rule meets all 3 conditions, it is *security-preserving*
Unambiguous Rule Selection

- Problem: multiple rules may apply to a request in a state
 - if two rules act on a read request in state v …
- Solution: define relation $W(\omega)$ for a set of rules $\omega = \{ \rho_1, \ldots, \rho_m \}$ such that a state $(r, d, v, v') \in W(\omega)$ iff either
 - $d = i$; or
 - for exactly one integer j, $\rho_j(r, v) = (d, v')$
- Either request is illegal, or only one rule applies
Rules Preserving SSC

- Let ω be set of ssc-preserving rules. Let state z_0 satisfy simple security condition. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies simple security condition
 - Proof: by contradiction.
 - Choose $(x, y, z) \in \Sigma(R, D, W(\omega), z_0)$ as state not satisfying simple security condition; then choose $t \in N$ such that (x_t, y_t, z_t) is first appearance not meeting simple security condition
 - As $(x_t, y_t, z_t, z_{t-1}) \in W(\omega)$, there is unique rule $\rho \in \omega$ such that $\rho(x_t, z_{t-1}) = (y_t, z_t)$ and $y_t \neq i$.
 - As ρ ssc-preserving, and z_{t-1} satisfies simple security condition, then z_t meets simple security condition, contradiction.
Adding States Preserving SSC

- Let $v = (b, m, f, h)$ satisfy simple security condition. Let $(s, o, p) \notin b$, $b' = b \cup \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then v' satisfies simple security condition iff:

 1. Either $p = e$ or $p = a$; or
 2. Either $p = r$ or $p = w$, and $f_c(s) \text{ dom } f_o(o)$

- Proof

 1. Immediate from definition of simple security condition and v' satisfying $ssc \ rel \ f$
 2. v' satisfies simple security condition means $f_s(s) \text{ dom } f_o(o)$, and for converse, $(s, o, p) \in b'$ satisfies $ssc \ rel \ f$, so v' satisfies simple security condition
Rules, States Preserving \ast-Property

- Let ω be set of \ast-property-preserving rules, state z_0 satisfies \ast-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies \ast-property.
Rules, States Preserving ds-Property

• Let ω be set of ds-property-preserving rules, state z_0 satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property
Combining

• Let \(\rho \) be a rule and \(\rho(r, v) = (d, v') \), where \(v = (b, m, f, h) \) and \(v' = (b', m', f', h') \). Then:
 1. If \(b' \subseteq b, f' = f \), and \(v \) satisfies the simple security condition, then \(v' \) satisfies the simple security condition
 2. If \(b' \subseteq b, f' = f \), and \(v \) satisfies the *-property, then \(v' \) satisfies the *-property
 3. If \(b' \subseteq b, m[s, o] \subseteq m'[s, o] \) for all \(s \in S \) and \(o \in O \), and \(v \) satisfies the ds-property, then \(v' \) satisfies the ds-property
Proof

1. Suppose ν satisfies simple security property.
 a) $b' \subseteq b$ and $(s, o, r) \in b'$ implies $(s, o, r) \in b$
 b) $b' \subseteq b$ and $(s, o, w) \in b'$ implies $(s, o, w) \in b$
 c) So $f_c(s) \text{ dom } f_o(o)$
 d) But $f' = f$
 e) Hence $f'_c(s) \text{ dom } f'_o(o)$
 f) So ν' satisfies simple security condition

2, 3 proved similarly
Example Instantiation: Multics

- 11 rules affect rights:
 - set to request, release access
 - set to give, remove access to different subject
 - set to create, reclassify objects
 - set to remove objects
 - set to change subject security level

- Set of “trusted” subjects $S_T \subseteq S$
 - *-property not enforced; subjects trusted not to violate

- $\Delta(\rho)$ domain
 - determines if components of request are valid
get-read Rule

• Request \(r = (\text{get}, s, o, ___) \)

 – \(s \) gets (requests) the right to read \(o \)

• Rule is \(\rho_1(r, v) \):

 if \((r \neq \Delta(\rho_1))\) then \(\rho_1(r, v) = (__, v) \);

 else if \((f_s(s) \text{ dom } f_o(o) \text{ and } [s \in S_T \text{ or } f_c(s) \text{ dom } f_o(o)]) \text{ and } r \in m[s, o])\) then \(\rho_1(r, v) = (y, (b \cup \{(s, o, __)\}, m, f, h)) \);

 else \(\rho_1(r, v) = (n, v) \);
Security of Rule

• The get-read rule preserves the simple security condition, the *-property, and the ds-property
 – Proof
 • Let \(\nu \) satisfy all conditions. Let \(\rho_1(r, \nu) = (d, \nu') \). If \(\nu' = \nu \), result is trivial. So let \(\nu' = (b \cup \{ (s_2, o, r) \}, m, f, h) \).
• Consider the simple security condition.
 – From the choice of v', either $b' - b = \emptyset$ or $\{(s_2, o, r)\}$
 – If $b' - b = \emptyset$, then $\{(s_2, o, r)\} \in b$, so $v = v'$, proving that v' satisfies the simple security condition.
 – If $b' - b = \{(s_2, o, r)\}$, because the get-read rule requires that $f_s(s) \text{dom} f_o(o)$, an earlier result says that v' satisfies the simple security condition.
Proof

- Consider the \(*\)-property.
 - Either $s_2 \in S_T$ or $f_c(s) \in \text{dom} f_o(o)$ from the definition of get-read
 - If $s_2 \in S_T$, then s_2 is trusted, so \(*\)-property holds by definition of trusted and S_T.
 - If $f_c(s) \in \text{dom} f_o(o)$, an earlier result says that v' satisfies the simple security condition.
Proof

- Consider the discretionary security property.
 - Conditions in the get-read rule require $r \in m[s, o]$ and either $b' - b = \emptyset$ or $\{ (s_2, o, r) \}$
 - If $b' - b = \emptyset$, then $\{ (s_2, o, r) \} \in b$, so $v = v'$, proving that v' satisfies the simple security condition.
 - If $b' - b = \{ (s_2, o, r) \}$, then $\{ (s_2, o, r) \} \notin b$, an earlier result says that v' satisfies the ds-property.
Rules, States, and Conditions

Let ρ be a rule and $\rho(r, v) = (d, v')$, where $v = (b, m, f, h)$ and $v' = (b', m', f', h')$. Then:

1. If $b \subseteq b', f = f'$, and v satisfies the simple security condition, then v' satisfies the simple security condition.

2. If $b \subseteq b', f = f'$, and v satisfies the *-property, then v' satisfies the *-property.

3. If $b \subseteq b', m[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and v satisfies the ds-property, then v' satisfies the ds-property.
Example Instantiation: Multics

• 11 rules affect rights:
 – set to request, release access
 – set to give, remove access to different subject
 – set to create, reclassify objects
 – set to remove objects
 – set to change subject security level

• Set of “trusted” subjects $S_T \subseteq S$
 – *-property not enforced; subjects trusted not to violate

• $\Delta(\rho)$ domain
 – determines if components of request are valid
get-read Rule

• Request \(r = (\text{get}, s, o, _r) \)
 - \(s \) gets (requests) the right to read \(o \)

• Rule is \(\rho_1(r, v) \):
 \[
 \text{if } (r \neq \Delta(\rho_1)) \text{ then } \rho_1(r, v) = (_i, v); \\
 \text{else if } (f_s(s) \text{ dom } f_o(o) \text{ and } [s \in S_T \text{ or } f_c(s) \text{ dom } f_o(o)]) \\
 \text{and } r \in m[s, o])
 \text{ then } \rho_1(r, v) = (y, (b \cup \{ (s, o, _r) \}, m, f, h)); \\
 \text{else } \rho_1(r, v) = (_n, v);
 \]
Security of Rule

- The get-read rule preserves the simple security condition, the \(*\)-property, and the ds-property
 - Proof
 - Let \(v \) satisfy all conditions. Let \(\rho_1(r, v) = (d, v') \). If \(v' = v \), result is trivial. So let \(v' = (b \cup \{ (s_2, o, r) \}, m, f, h) \).
Proof

• Consider the simple security condition.
 – From the choice of v', either $b' - b = \emptyset$ or $\{ (s_2, o, r) \}$
 – If $b' - b = \emptyset$, then $\{ (s_2, o, r) \} \in b$, so $v = v'$, proving that v' satisfies the simple security condition.
 – If $b' - b = \{ (s_2, o, r) \}$, because the get-read rule requires that $f_c(s) \text{dom} f_o(o)$, an earlier result says that v' satisfies the simple security condition.
Proof

• Consider the *-property.
 – Either $s_2 \in S_T$ or $f_c(s) \text{ dom } f_o(o)$ from the definition of get-read
 – If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T.
 – If $f_c(s) \text{ dom } f_o(o)$, an earlier result says that v' satisfies the simple security condition.
Proof

• Consider the discretionary security property.
 – Conditions in the get-read rule require \(r \in m[s, o] \) and either \(b' - b = \emptyset \) or \(\{ (s_2, o, r) \} \)
 – If \(b' - b = \emptyset \), then \(\{ (s_2, o, r) \} \in b \), so \(v = v' \), proving that \(v' \) satisfies the simple security condition.
 – If \(b' - b = \{ (s_2, o, r) \} \), then \(\{ (s_2, o, r) \} \not\in b \), an earlier result says that \(v' \) satisfies the ds-property.
give-read Rule

- Request $r = (s_1, \text{give}, s_2, o, \underline{r})$
 - s_1 gives (request to give) s_2 the (discretionary) right to read o
 - Rule: can be done if giver can alter parent of object
 - If object or parent is root of hierarchy, special authorization required
- Useful definitions
 - $\text{root}(o)$: root object of hierarchy h containing o
 - $\text{parent}(o)$: parent of o in h (so $o \in h(\text{parent}(o)))$
 - $\text{canallow}(s, o, v)$: s specially authorized to grant access when object or parent of object is root of hierarchy
 - $m \land m[s, o] \leftarrow \underline{r}$: access control matrix m with \underline{r} added to $m[s, o]$
give-read Rule

- Rule is $\rho_6(r, v)$:

 \[
 \text{if} \ (r \neq \Delta(\rho_6)) \ \text{then} \ \rho_6(r, v) = (i, v);
 \]

 \[
 \text{else if} \ ([o \neq \text{root}(o) \ \text{and} \ \text{parent}(o) \neq \text{root}(o) \ \text{and} \ \text{parent}(o) \in b(s_1:w)] \ \text{or} \\
 [\text{parent}(o) = \text{root}(o) \ \text{and} \ \text{canallow}(s_1, o, v)] \ \text{or} \\
 [o = \text{root}(o) \ \text{and} \ \text{canallow}(s_1, o, v)]) \\
 \text{then} \ \rho_6(r, v) = (y, (b, m \land m[s_2, o] \leftarrow r, f, h));
 \]

 \[
 \text{else} \ \rho_1(r, v) = (n, v);
 \]
The *-property, and the ds-property

- Proof: Let \(\nu \) satisfy all conditions. Let \(\rho_1(r, \nu) = (d, \nu') \).
 If \(\nu' = \nu \), result is trivial. So let \(\nu' = (b, m[s_2, o] \leftarrow _f, h) \).
 So \(b' = b, f' = f, m'[x, y] = m[x, y] \) for all \(x \in S \) and \(y \in O \) such that \(x \neq s \) and \(y \neq o \), and \(m[s, o] \subseteq m'[s, o] \).
 Then by earlier result, \(\nu' \) satisfies the simple security condition, the *-property, and the ds-property.
Principle of Tranquility

• Raising object’s security level
 – Information once available to some subjects is no longer available
 – Usually assume information has already been accessed, so this does nothing

• Lowering object’s security level
 – The *declassification problem*
 – Essentially, a “write down” violating *-property
 – Solution: define set of trusted subjects that sanitize or remove sensitive information before security level lowered
Types of Tranquility

• **Strong Tranquility**
 – The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system

• **Weak Tranquility**
 – The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system
Example of Weak Tranquility

- Only one subject at TOP SECRET
- Document at CONFIDENTIAL
- New CONFIDENTIAL user to be added
 - User should not see document
- Raise document to SECRET
 - Subject still cannot write document
 - All security relationships unchanged
Declassification

- Lowering the security level of a document
 - Direct violation of the “no writes down” rule
 - May be necessary for legal or other purposes

- Declassification policy
 - Part of security policy covering this
 - Here, “secure” means classification changes to a lower level in accordance with declassification policy
Principles

- Principle of Semantic Consistency
- Principle of Occlusion
- Principle of Conservativity
- Principle of Monotonicity of Release
Principle of Semantic Consistency

• As long as the semantics of the parts of the system not involved in the declassification do not change, those parts may be changed without affecting system security
 – No leaking due to semantic incompatibilities
 – *Delimited release*: allow declassification, release of information only through specific channels (“escape hatches”)

April 21, 2017

ECS 235B Spring Quarter 2017
Principle of Occlusion

• Declassification mechanism cannot conceal *improper* lowering of security levels
 – Robust declassification property: attacker cannot use escape hatches to obtain information unless it is properly declassified
Other Principles

- Principle of Conservativity
 - Absent declassification, system is secure

- Principle of Monotonicity of Release
 - When declassification is performed in an authorized manner by authorized subjects, the system remains secure

Idea: declassifying information in accordance with declassification policy does not affect security
Controversy

• McLean:
 – “value of the BST is much overrated since there is a great deal more to security than it captures. Further, what is captured by the BST is so trivial that it is hard to imagine a realistic security model for which it does not hold.”
 – Basis: given assumptions known to be non-secure, BST can prove a non-secure system to be secure
†-Property

- State \((b, m, f, h)\) satisfies the †-property iff for each \(s \in S\) the following hold:
 1. \(b(s: \text{a}) \neq \emptyset \Rightarrow \forall o \in b(s: \text{a}) \left[f_c(s) \text{ dom } f_o(o) \right] \)
 2. \(b(s: \text{w}) \neq \emptyset \Rightarrow \forall o \in b(s: \text{w}) \left[f_o(o) = f_c(s) \right] \)
 3. \(b(s: \text{r}) \neq \emptyset \Rightarrow \forall o \in b(s: \text{r}) \left[f_c(s) \text{ dom } f_o(o) \right] \)
- Idea: for reading, subject dominates object; for writing, subject also dominates object
- Differs from *-property in that the mandatory condition for writing is reversed
 - For *-property, it’s “object dominates subject”
Analogues

The following two theorems can be proved

• $\Sigma(R, D, W, z_0)$ satisfies the †-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies the following for every $s \in S'$
 - Every $(s, o, p) \in b' - b$ satisfies the †-property relative to S'
 - Every $(s, o, p) \in b$ that does not satisfy the †-property relative to S' is not in b

• $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and W satisfies the conditions for the simple security condition, the †-property, and the ds-property.
Problem

• This system is clearly non-secure!
 – Information flows from higher to lower because of the †-property
Discussion

• Role of Basic Security Theorem is to demonstrate that rules preserve security

• Key question: what is security?
 – Bell-LaPadula defines it in terms of 3 properties (simple security condition, *-property, discretionary security property)
 – Theorems are assertions about these properties
 – Rules describe changes to a particular system instantiating the model
 – Showing system is secure requires proving rules preserve these 3 properties
Rules and Model

- Nature of rules is irrelevant to model
- Model treats “security” as axiomatic
- Policy defines “security”
 - This instantiates the model
 - Policy reflects the requirements of the systems
- McLean’s definition differs from Bell-LaPadula
 - … and is not suitable for a confidentiality policy
- Analysts cannot prove “security” definition is appropriate through the model
System Z

- System supporting weak tranquility
- On *any* request, system downgrades *all* subjects and objects to lowest level and adds the requested access permission
 - Let initial state satisfy all 3 properties
 - Successive states also satisfy all 3 properties
- Clearly not secure
 - On first request, everyone can read everything
Reformulation of Secure Action

- Given state that satisfies the 3 properties, the action transforms the system into a state that satisfies these properties and eliminates any accesses present in the transformed state that would violate the property in the initial state, then the action is secure.
- BST holds with these modified versions of the 3 properties.
Reconsider System Z

- Initial state:
 - subject s, object o
 - $C = \{\text{High, Low}\}$, $K = \{\text{All}\}$
- Take:
 - $f_c(s) = (\text{Low, } \{\text{All}\})$, $f_o(o) = (\text{High, } \{\text{All}\})$
 - $m[s, o] = \{w\}$, and $b = \{(s, o, w)\}$.
- s requests r access to o
- Now:
 - $f'_o(o) = (\text{Low, } \{\text{All}\})$
 - $(s, o, r) \in b'$, $m'[s, o] = \{r, w\}$
Non-Secure System Z

• As \((s, o, r) \in b' - b\) and \(f_o(o) \text{ dom } f_c(s)\), access added that was illegal in previous state

 – Under the new version of the Basic Security Theorem, the current state of System Z is not secure

 – But, as \(f'_c(s) = f'_o(o)\) under the old version of the Basic Security Theorem, the current state of System Z is secure
Response: What Is Modeling?

- Two types of models
 1. Abstract physical phenomenon to fundamental properties
 2. Begin with axioms and construct a structure to examine the effects of those axioms
- Bell-LaPadula Model developed as a model in the first sense
 - McLean assumes it was developed as a model in the second sense
Reconciling System Z

• Different definitions of security create different results
 – Under one (original definition in Bell-LaPadula Model), System Z is secure
 – Under other (McLean’s definition), System Z is not secure