May 10: Information Flow

- Entropy
- Entropy and information flow
- Non-lattice information flow policies
- Static (compile-time) mechanisms
- Dynamic (run-time) mechanisms
Information Flow

• How do we define and measure it?
 – *Entropy*

• So, let’s review entropy
Entropy

• Uncertainty of a value, as measured in bits
• Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
 – Therefore entropy of X is $H(X) = 1$
• Formal definition: random variable X, values x_1, \ldots, x_n; so $\sum_i p(X = x_i) = 1$

$$H(X) = -\sum_i p(X = x_i) \log p(X = x_i)$$
Heads or Tails?

- $H(X) = -p(X = \text{heads}) \ lg \ p(X = \text{heads})$
 $- p(X = \text{tails}) \ lg \ p(X = \text{tails})$

 $= -(1/2) \ lg (1/2) - (1/2) \ lg (1/2)$

 $= -(1/2) (-1) - (1/2) (-1) = 1$

- Confirms previous intuitive result
n-Sided Fair Die

$$H(X) = -\Sigma_i p(X = x_i) \lg p(X = x_i)$$

As $p(X = x_i) = 1/n$, this becomes

$$H(X) = -\Sigma_i (1/n) \lg (1/n) = -n(1/n) (-\lg n)$$

so

$$H(X) = \lg n$$

which is the number of bits in n, as expected.
Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul

W represents the winner. What is its entropy?

- $w_1 = \text{Ann}$, $w_2 = \text{Pam}$, $w_3 = \text{Paul}$
- $p(W = w_1) = p(W = w_2) = 2/5$, $p(W = w_3) = 1/5$

- So $H(W) = -\sum_i p(W = w_i) \log p(W = w_i) = -(2/5) \log (2/5) - (2/5) \log (2/5) - (1/5) \log (1/5) = -(4/5) + \log 5 \approx 1.52$

- If all equally likely to win, $H(W) = \log 3 = 1.58$
Joint Entropy

• \(X \) takes values from \(\{ x_1, \ldots, x_n \} \)
 \[\sum_i p(X = x_i) = 1 \]
• \(Y \) takes values from \(\{ y_1, \ldots, y_m \} \)
 \[\sum_i p(Y = y_i) = 1 \]
• Joint entropy of \(X, Y \) is:
 \[H(X, Y) = -\sum_j \sum_i p(X=x_i, Y=y_j) \log p(X=x_i, Y=y_j) \]
Example

X: roll of fair die, Y: flip of coin

$p(X=1, Y=\text{heads}) = p(X=1) \cdot p(Y=\text{heads}) = 1/12$

- As X and Y are independent

\[
H(X, Y) = -\sum_i \sum_j p(X=x_i, Y=y_j) \cdot \log p(X=x_i, Y=y_j)
\]

\[
= -2 \left[6 \left[\frac{1}{12} \cdot \log \left(\frac{1}{12} \right) \right] \right] = \log 12
\]
Conditional Entropy

- X takes values from $\{ x_1, \ldots, x_n \}$
 \[- \Sigma_i p(X=x_i) = 1 \]
- Y takes values from $\{ y_1, \ldots, y_m \}$
 \[- \Sigma_i p(Y=y_i) = 1 \]
- Conditional entropy of X given $Y=y_j$ is:
 \[- H(X \mid Y=y_j) = -\Sigma_i p(X=x_i \mid Y=y_j) \ln p(X=x_i \mid Y=y_j) \]
- Conditional entropy of X given Y is:
 \[- H(X \mid Y) = -\Sigma_j p(Y=y_j) \Sigma_i p(X=x_i \mid Y=y_j) \ln p(X=x_i \mid Y=y_j) \]
Example

- X roll of red die, Y sum of red, blue roll
- Note $p(X=1 \mid Y=2) = 1$, $p(X=i \mid Y=2) = 0$ for $i \neq 1$
 - If the sum of the rolls is 2, both dice were 1
- $H(X \mid Y=2) = -\sum_i p(X=x_i \mid Y=2) \lg p(X=x_i \mid Y=2) = 0$
- Note $p(X=i \mid Y=7) = 1/6$
 - If the sum of the rolls is 7, the red die can be any of 1, ..., 6 and the blue die must be 7—roll of red die
- $H(X \mid Y=7) = -\sum_i p(X=x_i \mid Y=7) \lg p(X=x_i \mid Y=7)$
 $$= -6 \left(\frac{1}{6} \right) \lg \left(\frac{1}{6} \right) = \lg 6$$
Perfect Secrecy

- Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
- $M = \{ m_1, \ldots, m_n \}$ set of messages
- $C = \{ c_1, \ldots, c_n \}$ set of messages
- Cipher $c_i = E(m_i)$ achieves perfect secrecy if $H(M | C) = H(M)$
Entropy and Information Flow

• Idea: info flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c

• Formally:
 – s time before execution of c, t time after
 – $H(x_s \mid y_t) < H(x_s \mid y_s)$
 – If no y at time s, then $H(x_s \mid y_t) < H(x_s)$
Example 1

- Command is $x := y + z$; where:
 - $0 \leq y \leq 7$, equal probability
 - $z = 1$ with prob. $1/2$, $z = 2$ or 3 with prob. $1/4$ each

- s state before command executed; t, after; so
 - $H(y_s) = H(y_t) = -8(1/8) \lg (1/8) = 3$
 - $H(z_s) = H(z_t) = -(1/2) \lg (1/2) -2(1/4) \lg (1/4) = 1.5$

- If you know x_t, y_s can have at most 3 values, so
 $H(y_s \mid x_t) = -3(1/3) \lg (1/3) = \lg 3$
Example 2

- Command is
 - \texttt{if } x = 1 \texttt{ then } y := 0 \texttt{ else } y := 1; \texttt{;}

where:
- \(x, y \) equally likely to be either 0 or 1

- \(H(x_s) = 1 \) as \(x \) can be either 0 or 1 with equal probability

- \(H(x_s \mid y_t) = 0 \) as if \(y_t = 1 \) then \(x_s = 0 \) and vice versa
 - Thus, \(H(x_s \mid y_t) = 0 < 1 = H(x_s) \)

- So information flowed from \(x \) to \(y \)
Implicit Flow of Information

• Information flows from x to y without an explicit assignment of the form $y := f(x)$
 – $f(x)$ an arithmetic expression with variable x

• Example from previous slide:
 – if $x = 1$ then $y := 0$
 else $y := 1$;

• So must look for implicit flows of information to analyze program
Notation

• \(x \) means class of \(x \)
 – In Bell-LaPadula based system, same as “label of security compartment to which \(x \) belongs”

• \(x \leq y \) means “information can flow from an element in class of \(x \) to an element in class of \(y \)”
 – Or, “information with a label placing it in class \(x \) can flow into class \(y \)”
Information Flow Policies

Information flow policies are usually:

• reflexive
 – So information can flow freely among members of a single class

• transitive
 – So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3
Non-Transitive Policies

- Betty is a confidant of Anne
- Cathy is a confidant of Betty
 - With transitivity, information flows from Anne to Betty to Cathy
- Anne confides to Betty she is having an affair with Cathy’s spouse
 - Transitivity undesirable in this case, probably
Transitive Non-Lattice Policies

• 2 faculty members co-PIs on a grant
 – Equal authority; neither can overrule the other
• Grad students report to faculty members
• Undergrads report to grad students
• Information flow relation is:
 – Reflexive and transitive
• But some elements (people) have no “least upper bound” element
 – What is it for the faculty members?
Confidentiality Policy Model

• Lattice model fails in previous 2 cases
• Generalize: policy $I = (SC_I, \leq_I, join_I)$:
 – SC_I set of security classes
 – \leq_I ordering relation on elements of SC_I
 – $join_I$ function to combine two elements of SC_I
• Example: Bell-LaPadula Model
 – SC_I set of security compartments
 – \leq_I ordering relation dom
 – $join_I$ function lub
Confinement Flow Model

- $(I, O, \text{confine}, \rightarrow)$
 - $I = (SC_I, \leq_I, \text{join}_I)$
 - O set of entities
 - $\rightarrow: O \times O$ with $(a, b) \in \rightarrow$ (written $a \rightarrow b$) iff information can flow from a to b
 - for $a \in O$, $\text{confine}(a) = (a_L, a_U) \in SC_I \times SC_I$ with $a_L \leq_I a_U$
 - Interpretation: for $a \in O$, if $x \leq_I a_U$, info can flow from x to a, and if $a_L \leq_I x$, info can flow from a to x
 - So a_L lowest classification of info allowed to flow out of a, and a_U highest classification of info allowed to flow into a
Assumptions, *etc.*

- Assumes: object can change security classes
 - So, variable can take on security class of its data
- Object x has security class x currently
- Note transitivity *not* required
- If information can flow from a to b, then b dominates a under ordering of policy I:
 \[(\forall a, b \in O)\left[a \rightarrow b \Rightarrow a_L \leq_I b_U \right] \]
Example 1

- $SC_I = \{ U, C, S, TS \}$, with $U \leq_I C$, $C \leq_I S$, and $S \leq_I TS$
- $a, b, c \in O$
 - $\text{confine}(a) = [C, C]$
 - $\text{confine}(b) = [S, S]$
 - $\text{confine}(c) = [TS, TS]$
- Secure information flows: $a \rightarrow b$, $a \rightarrow c$, $b \rightarrow c$
 - As $a_L \leq_I b_U$, $a_L \leq_I c_U$, $b_L \leq_I c_U$
 - Transitivity holds
Example 2

- SC_I, \lesseq_I as in Example 1
- $x, y, z \in O$
 - $\text{confine}(x) = [C, C]$
 - $\text{confine}(y) = [S, S]$
 - $\text{confine}(z) = [C, TS]$
- Secure information flows: $x \to y$, $x \to z$, $y \to z$, $z \to x$, $z \to y$
 - As $x_L \lesseq_I y_U$, $x_L \lesseq_I z_U$, $y_L \lesseq_I z_U$, $z_L \lesseq_I x_U$, $z_L \lesseq_I y_U$
 - Transitivity does not hold
 - $y \to z$ and $z \to x$, but $y \to x$ is false, because $y_L \lesseq_I x_U$ is false
Transitive Non-Lattice Policies

• $Q = (S_Q, \leq_Q)$ is a quasi-ordered set when \leq_Q is transitive and reflexive over S_Q

• How to handle information flow?
 – Define a partially ordered set containing quasi-ordered set
 – Add least upper bound, greatest lower bound to partially ordered set
 – It’s a lattice, so apply lattice rules!
• $\forall x \in S_Q$: let $f(x) = \{ y \mid y \in S_Q \land y \leq_Q x \}$
 - Define $S_{QP} = \{ f(x) \mid x \in S_Q \}$
 - Define $\leq_{QP} = \{ (x, y) \mid x, y \in S_Q \land x \subseteq y \}$
 • S_{QP} partially ordered set under \leq_{QP}
 • f preserves order, so $y \leq_Q x$ iff $f(x) \leq_{QP} f(y)$

• Add upper, lower bounds
 - $S_{QP}' = S_{QP} \cup \{ S_Q, \emptyset \}$
 - Upper bound $ub(x, y) = \{ z \mid z \in S_{QP} \land x \subseteq z \land y \subseteq z \}$
 - Least upper bound $lub(x, y) = \cap ub(x, y)$
 • Lower bound, greatest lower bound defined analogously
And the Policy Is …

• Now $(S_{QP'}, \leq_{QP})$ is lattice
• Information flow policy on quasi-ordered set emulates that of this lattice!
Non-Transitive Flow Policies

- Government agency information flow policy (on next slide)
- Entities public relations officers PRO, analysts A, spymasters S
 - \(\text{confine}(\text{PRO}) = \{ \text{public, analysis} \} \)
 - \(\text{confine}(A) = \{ \text{analysis, top-level} \} \)
 - \(\text{confine}(S) = \{ \text{covert, top-level} \} \)
Information Flow

- By confinement flow model:
 - \(\text{PRO} \leq A, A \leq \text{PRO} \)
 - \(\text{PRO} \leq S \)
 - \(A \leq S, S \leq A \)
- Data cannot flow to public relations officers; not transitive
 - \(S \leq A, A \leq \text{PRO} \)
 - \(S \leq \text{PRO} \) is false
Transforming Into Lattice

- Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
 - Done so this set is partially ordered
 - Means it can be transformed into a lattice

- Can show this mapping preserves ordering relation
 - So it preserves non-orderings and non-transitivity of elements corresponding to those of original set
Dual Mapping

- $R = (SC_R, \leq_R, \text{join}_R)$ reflexive info flow policy
- $P = (S_P, \leq_P)$ ordered set
 - Define dual mapping functions $l_R, h_R: SC_R \rightarrow S_P$
 - $l_R(x) = \{ x \}$
 - $h_R(x) = \{ y \mid y \in SC_R \land y \leq_R x \}$
 - S_P contains subsets of SC_R; \leq_P subset relation
 - Dual mapping function order preserving iff
 \[(\forall a, b \in SC_R)[a \leq_R b \iff l_R(a) \leq_P h_R(b)]\]
Theorem

Dual mapping from reflexive info flow policy R to ordered set P order-preserving

Proof sketch: all notation as before

(\Rightarrow) Let $a \leq_R b$. Then $a \in l_R(a)$, $a \in h_R(b)$, so $l_R(a) \subseteq h_R(b)$, or $l_R(a) \leq_P h_R(b)$

(\Leftarrow) Let $l_R(a) \leq_P h_R(b)$. Then $l_R(a) \subseteq h_R(b)$.
But $l_R(a) = \{a\}$, so $a \in h_R(b)$, giving $a \leq_R b$
Info Flow Requirements

• Interpretation: let \(\text{confine}(x) = \{ x_L, x_U \} \), consider class \(y \)

 – Information can flow from \(x \) to element of \(y \) iff
 \(x_L \leq_R y \), or \(l_R(x_L) \subseteq h_R(y) \)

 – Information can flow from element of \(y \) to \(x \) iff
 \(y \leq_R x_U \), or \(l_R(y) \subseteq h_R(x_U) \)
Revisit Government Example

- Information flow policy is R
- Flow relationships among classes are:
 - public \leq_R public
 - public \leq_R analysis
 - public \leq_R covert
 - public \leq_R top-level
 - analysis \leq_R analysis
 - analysis \leq_R covert
 - covert \leq_R covert
 - covert \leq_R top-level
 - analysis \leq_R top-level
 - top-level \leq_R top-level
Dual Mapping of R

- **Elements l_R, h_R:**
 - l_R(public) = { public }
 - h_R(public) = { public }
 - l_R(analysis) = { analysis }
 - h_R(analysis) = { public, analysis }
 - l_R(covert) = { covert }
 - h_R(covert) = { public, covert }
 - l_R(top-level) = { top-level }
 - h_R(top-level) = { public, analysis, covert, top-level }
confine

• Let p be entity of type PRO, a of type A, s of type S

• In terms of P (not R), we get:
 – $\text{confine}(p) = [\{ \text{public} \}, \{ \text{public, analysis} \}]$
 – $\text{confine}(a) = [\{ \text{analysis} \},$
 \{ \text{public, analysis, covert, top-level} \}]$
 – $\text{confine}(s) = [\{ \text{covert} \},$
 \{ \text{public, analysis, covert, top-level} \}]$
And the Flow Relations Are …

• $p \rightarrow a$ as $l_R(p) \subseteq h_R(a)$
 - $l_R(p) = \{ \text{public} \}$
 - $h_R(a) = \{ \text{public, analysis, covert, top-level} \}$

• Similarly: $a \rightarrow p$, $p \rightarrow s$, $a \rightarrow s$, $s \rightarrow a$

• **But $s \rightarrow p$ is false** as $l_R(s) \not\subset h_R(p)$
 - $l_R(s) = \{ \text{covert} \}$
 - $h_R(p) = \{ \text{public, analysis} \}$
Analysis

- \((S_P, \leq_P)\) is a lattice, so it can be analyzed like a lattice policy

- Dual mapping preserves ordering, hence non-ordering and non-transitivity, of original policy
 - So results of analysis of \((S_P, \leq_P)\) can be mapped back into \((SC_R, \leq_R, join_R)\)
Compiler-Based Mechanisms

- Detect unauthorized information flows in a program during compilation
- Analysis not precise, but secure
 - If a flow could violate policy (but may not), it is unauthorized
 - No unauthorized path along which information could flow remains undetected
- Set of statements certified with respect to an information flow policy if the flows in the set of statements do not violate that policy
Example

\[
\text{if } x = 1 \text{ then } y := a; \\
\text{else } y := b; \\
\]

• Info flows from \(x \) and \(a \) to \(y \), or from \(x \) and \(b \) to \(y \)

• Certified only if \(x \leq y \) and \(a \leq y \) and \(b \leq y \)
 – Note flows for both branches must be true unless compiler can determine that one branch will never be taken
Declarations

• Notation:

\[x: \text{int class } \{ A, B \} \]

means \(x \) is an integer variable with security class at least \(\text{lub}\{ A, B \} \), so \(\text{lub}\{ A, B \} \leq x \)

• Distinguished classes \(\text{Low, High} \)
 – Constants are always \(\text{Low} \)
Input Parameters

• Parameters through which data passed into procedure

• Class of parameter is class of actual argument

\[
 i_p: \text{type\ class\ } \{\ i_p\ \}
\]
Output Parameters

- Parameters through which data passed out of procedure
 - If data passed in, called “input/output parameter”
- As information can flow from input parameters to output parameters, class must include this:

 \[o_p: \text{type class} \{ r_1, \ldots, r_n \} \]

 where \(r_i \) is class of \(i \)th input or input/output argument
Example

```
proc sum(x: int class { A });
    var out: int class { A, B });
begin
    out := out + x;
end;
• Require \( x \leq \text{out} \) and \( \text{out} \leq \text{out} \)
```
Array Elements

• Information flowing out:

\[
\ldots := a[i]
\]

Value of \(i \), \(a[i] \) both affect result, so class is \(\text{lub}\{ a[i], i \} \)

• Information flowing in:

\[
a[i] := \ldots
\]

• Only value of \(a[i] \) affected, so class is \(a[i] \)
Assignment Statements

\[x := y + z; \]

• Information flows from \(y, z \) to \(x \), so this requires \(\text{lub}(y, z) \leq x \)

More generally:

\[y := f(x_1, \ldots, x_n) \]

• the relation \(\text{lub}(x_1, \ldots, x_n) \leq y \) must hold
Compound Statements

\[x := y + z; \quad a := b \times c - x; \]

- First statement: \(\text{lub}(y, z) \leq x \)
- Second statement: \(\text{lub}(b, c, x) \leq a \)
- So, both must hold (i.e., be secure)

More generally:

\[S_1; \ldots; S_n; \]

- Each individual \(S_i \) must be secure
Conditional Statements

```
if x + y < z then a := b else d := b * c – x;
```

- The statement executed reveals information about x, y, z, so $\text{lub}(x, y, z) \leq \text{glb}(a, d)$

More generally:

```
if f(x_1, \ldots, x_n) then S_1 else S_2; end
```

- S_1, S_2 must be secure
- $\text{lub}(x_1, \ldots, x_n) \leq \text{glb}(y \mid y \text{ target of assignment in } S_1, S_2)$
Iterative Statements

\[\text{while } i < n \text{ do begin} \]
\[\quad a[i] := b[i]; \quad i := i + 1; \quad \text{end} \]

- Same ideas as for “if”, but must terminate

More generally:

\[\text{while } f(x_1, \ldots, x_n) \text{ do } S; \]

- Loop must terminate;
- \(S \) must be secure
- \(\text{lub}(x_1, \ldots, x_n) \leq \text{glb}(y \mid y \text{ target of assignment in } S) \)
Goto Statements

• No assignments
 – Hence no explicit flows

• Need to detect implicit flows

• Basic block is sequence of statements that have one entry point and one exit point
 – Control in block always flows from entry point to exit point
Example Program

```plaintext
proc tm(x: array[1..10][1..10] of int class {x});
    var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
  b1  i := 1;
  b2 L2: if i > 10 then goto L7;
  b3  j := 1;
  b4 L4: if j > 10 then goto L6;
  b5  y[j][i] := x[i][j]; j := j + 1; goto L4;
  b6 L6: i := i + 1; goto L2;
  b7 L7:
end;
```
Flow of Control

\[i > n \]

\[i \leq n \]

\[j > n \]

\[j \leq n \]
IFDs

• Idea: when two paths out of basic block, implicit flow occurs
 – Because information says *which* path to take

• When paths converge, either:
 – Implicit flow becomes irrelevant; or
 – Implicit flow becomes explicit

• *Immediate forward dominator* of a basic block b (written \text{IFD}(b)) is the first basic block lying on all paths of execution passing through b
IFD Example

- In previous procedure:
 - \(\text{IFD}(b_1) = b_2 \) one path
 - \(\text{IFD}(b_2) = b_7 \) \(b_2 \to b_7 \) or \(b_2 \to b_3 \to b_6 \to b_2 \to b_7 \)
 - \(\text{IFD}(b_3) = b_4 \) one path
 - \(\text{IFD}(b_4) = b_6 \) \(b_4 \to b_6 \) or \(b_4 \to b_5 \to b_6 \)
 - \(\text{IFD}(b_5) = b_4 \) one path
 - \(\text{IFD}(b_6) = b_2 \) one path
Requirements

- B_i is the set of basic blocks along an execution path from b_i to $\text{IFD}(b_i)$
 - Analogous to statements in conditional statement
- x_{i1}, \ldots, x_{in} variables in expression selecting which execution path containing basic blocks in B_i used
 - Analogous to conditional expression
- Requirements for being secure:
 - All statements in each basic blocks are secure
 - $\text{lub}(x_{i1}, \ldots, x_{in}) \leq \text{glb}\{ y \mid y \text{ target of assignment in } B_i \}$
Example of Requirements

- Within each basic block:
 \[b_1: \text{Low} \leq i \quad b_3: \text{Low} \leq j \quad b_6: \text{lub}\{ \text{Low}, i \} \leq i \]
 \[b_5: \text{lub}(x[i][j], i, j) \leq y[j][i]; \text{lub}(\text{Low}, j) \leq j \]
 - Combining, \(\text{lub}(x[i][j], i, j) \leq y[j][i] \)
 - From declarations, true when \(\text{lub}(x, i) \leq y \)

- \(B_2 = \{ b_3, b_4, b_5, b_6 \} \)
 - Assignments to \(i, j, y[j][i] \); conditional is \(i \leq 10 \)
 - Requires \(i \leq \text{glb}(i, j, y[j][i]) \)
 - From declarations, true when \(i \leq y \)
Example (continued)

- $B_4 = \{ b_5 \}$
 - Assignments to $j, y[j][i]$; conditional is $j \leq 10$
 - Requires $j \leq glb(i, y[j][i])$
 - From declarations, means $i \leq y$

- Result:
 - Combine $lub(x, i) \leq y; i \leq y; i \leq y$
 - Requirement is $lub(x, i) \leq y$
Procedure Calls

\[tm(a, b); \]

From previous slides, to be secure, \(lub(x, i) \leq y \) must hold

- In call, \(x \) corresponds to \(a \), \(y \) to \(b \)
- Means that \(lub(a, i) \leq b \), or \(a \leq b \)

More generally:

\[
\text{proc } pn(i_1, \ldots, i_m: \text{int}; \text{var } o_1, \ldots, o_n: \text{int})
begin \ S \ end;
\]

- \(S \) must be secure
- For all \(j \) and \(k \), if \(i_j \leq o_k \), then \(x_j \leq y_k \)
- For all \(j \) and \(k \), if \(o_j \leq o_k \), then \(y_j \leq y_k \)
Exceptions

proc `copy(x: int class { x });`

```
    var y: int class Low)
```

```plaintext
var sum: int class { x };
    z: int class Low;
begin
    y := z := sum := 0;
    while z = 0 do begin
        sum := sum + x;
        y := y + 1;
    end
end
```
Exceptions (cont)

• When sum overflows, integer overflow trap
 – Procedure exits
 – Value of \(x \) is \(\text{MAXINT}/y \)
 – Info flows from \(y \) to \(x \), but \(x \leq y \) never checked

• Need to handle exceptions explicitly
 – Idea: on integer overflow, terminate loop
    ```plaintext
    on integer_overflow_exception sum do z := 1;
    ```
 – Now info flows from \(sum \) to \(z \), meaning \(sum \leq z \)
 – This is false (\(sum = \{ x \} \) dominates \(z = \text{Low} \))
Infinite Loops

\[\text{proc } \textit{copy}(x: \textit{int} \ 0..1 \ \textit{class} \ \{ x \}); \]
\[\quad \text{var } y: \textit{int} \ 0..1 \ \textit{class} \ \textit{Low}); \]
\[\text{begin} \]
\[\quad y := 0; \]
\[\quad \text{while } x = 0 \ \text{do} \]
\[\quad \quad (* \textit{nothing} *) ; \]
\[\quad y := 1; \]
\[\text{end} \]

- If \(x = 0 \) initially, infinite loop
- If \(x = 1 \) initially, terminates with \(y \) set to 1
- No explicit flows, but implicit flow from \(x \) to \(y \)
Semaphores

Use these constructs:

\[
\begin{align*}
\text{wait}(x) &: \quad \text{if } x = 0 \text{ then block until } x > 0; \ x := x - 1; \\
\text{signal}(x) &: \quad x := x + 1;
\end{align*}
\]

- \(x\) is semaphore, a shared variable
- Both executed atomically

Consider statement

\[
\text{wait}(sem); \ x := x + 1;
\]

• Implicit flow from \(sem\) to \(x\)
 – Certification must take this into account!
Flow Requirements

• Semaphores in \textit{signal} irrelevant
 – Don’t affect information flow in that process

• Statement S is a wait
 – $\text{shared}(S)$: set of shared variables read
 • Idea: information flows out of variables in $\text{shared}(S)$
 – $\text{fglb}(S)$: glb of assignment targets following S
 – So, requirement is $\text{shared}(S) \leq \text{fglb}(S)$

• begin $S_1; \ldots S_n$ end
 – All S_i must be secure
 – For all i, $\text{shared}(S_i) \leq \text{fglb}(S_i)$
Example

begin

\begin{align*}
 x &:= y + z; \quad (* \ S_1 \ *) \\
 \text{wait}(sem); \quad (* \ S_2 \ *) \\
 a &:= b \times c - x; \quad (* \ S_3 \ *)
\end{align*}

end

• Requirements:

 \begin{itemize}
 \item \(\text{lub}(y, z) \leq x \)
 \item \(\text{lub}(b, c, x) \leq a \)
 \item \(\text{sem} \leq a \)
 \end{itemize}

 • Because \(\text{fglb}(S_2) = a \) and \(\text{shared}(S_2) = \text{sem} \)
Concurrent Loops

• Similar, but wait in loop affects *all* statements in loop
 – Because if flow of control loops, statements in loop before wait may be executed after wait

• Requirements
 – Loop terminates
 – All statements S_1, \ldots, S_n in loop secure
 – $lub(\{\text{shared}(S_1), \ldots, \text{shared}(S_n)\}) \leq glb(t_1, \ldots, t_m)$
 • Where t_1, \ldots, t_m are variables assigned to in loop
Loop Example

```
while i < n do begin
  a[i] := item;    (* S₁ *)
  wait(sem);       (* S₂ *)
  i := i + 1;      (* S₃ *)
end
```

• Conditions for this to be secure:
 – Loop terminates, so this condition met
 – S_1 secure if $\text{lub}(i, \text{item}) \leq a[i]$
 – S_2 secure if $\text{sem} \leq i$ and $\text{sem} \leq a[i]$
 – S_3 trivially secure
\texttt{cobegin/coend}

\texttt{cobegin}
\begin{align*}
x & := y + z; \quad (* \ S_1 \ *) \\
a & := b * c - y; \quad (* \ S_2 \ *)
\end{align*}
\texttt{coend}

• No information flow among statements
 – For S_1, $\text{lub}(y, z) \leq x$
 – For S_2, $\text{lub}(b, c, y) \leq a$

• Security requirement is both must hold
 – So this is secure if $\text{lub}(y, z) \leq x \land \text{lub}(b, c, y) \leq a$
Soundness

- Above exposition intuitive
- Can be made rigorous:
 - Express flows as types
 - Equate certification to correct use of types
 - Checking for valid information flows same as checking types conform to semantics imposed by security policy
Execution-Based Mechanisms

• Detect and stop flows of information that violate policy
 – Done at run time, not compile time

• Obvious approach: check explicit flows
 – Problem: assume for security, $x \leq y$

    ```
    if x = 1 then y := a;
    ```
 – When $x \neq 1$, $x =$ High, $y =$ Low, $a =$ Low, appears okay — but implicit flow violates condition!
Fenton’s Data Mark Machine

- Each variable has an associated class
- Program counter (PC) has one too
- Idea: branches are assignments to PC, so you can treat implicit flows as explicit flows
- Stack-based machine, so everything done in terms of pushing onto and popping from a program stack
Instruction Description

• *skip* means instruction not executed
• *push*(x, x) means push variable x and its security class x onto program stack
• *pop*(x, x) means pop top value and security class from program stack, assign them to variable x and its security class x respectively
Instructions

• \(x := x + 1 \) (increment)
 - Same as:

 \[
 \text{if } PC \leq x \text{ then } x := x + 1 \text{ else } \text{skip} \]

• if \(x = 0 \) then goto \(n \) else \(x := x - 1 \) (branch and save \(PC \) on stack)
 - Same as:

 \[
 \text{if } x = 0 \text{ then begin}
 \quad \text{push}(PC, PC); \text{ } PC := \text{lub}\{PC, x\}; \text{ } PC := n;
 \quad \text{end else if } PC \leq x \text{ then}
 \quad x := x - 1
 \text{else}
 \quad \text{skip;}
 \]
More Instructions

• if’ $x = 0$ then goto n else $x := x - 1$
 (branch without saving PC on stack)
 – Same as:
 if $x = 0$ then
 if $x \leq PC$ then $PC := n$ else skip
 else
 if $PC \leq x$ then $x := x - 1$ else skip
More Instructions

• return (go to just after last if)
 – Same as:
 \[\text{pop}(PC, PC); \]

• halt (stop)
 – Same as:
 \[\text{if program stack empty then halt} \]
 – Note stack empty to prevent user obtaining information from it after halting
Example Program

1. if $x = 0$ then goto 4 else $x := x - 1$
2. if $z = 0$ then goto 6 else $z := z - 1$
3. halt
4. $z := z + 1$
5. return
6. $y := y + 1$
7. return

- Initially $x = 0$ or $x = 1$, $y = 0$, $z = 0$
- Program copies value of x to y
Example Execution

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>PC</th>
<th>\overline{PC}</th>
<th>stack</th>
<th>check</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Low</td>
<td>—</td>
<td>Low $\leq x$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>Low</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>z</td>
<td>(3, Low)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>z</td>
<td>(3, Low)</td>
<td>$PC \leq y$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>Low</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Handling Errors

- Ignore statement that causes error, but continue execution
 - If aborted or a visible exception taken, user could deduce information
 - Means errors cannot be reported unless user has clearance at least equal to that of the information causing the error
Variable Classes

• Up to now, classes fixed
 – Check relationships on assignment, etc.

• Consider variable classes
 – Fenton’s Data Mark Machine does this for PC
 – On assignment of form $y := f(x_1, \ldots, x_n)$, y
 changed to $lub(x_1, \ldots, x_n)$
 – Need to consider implicit flows, also
Example Program

// Copy value from x to y; initially, x is 0 or 1
proc copy(x: int class { x });
 var y: int class { y };
var z: int class variable { Low };
begin
 y := 0;
 z := 0;
 if x = 0 then z := 1;
 if z = 0 then y := 1;
end;

• z changes when z assigned to

• Assume y < x
Analysis of Example

- $x = 0$
 - $z := 0$ sets z to Low
 - if $x = 0$ then $z := 1$ sets z to 1 and z to x
 - So on exit, $y = 0$

- $x = 1$
 - $z := 0$ sets z to Low
 - if $z = 0$ then $y := 1$ sets y to 1 and checks that $\text{lub}\{\text{Low}, z\} \leq y$
 - So on exit, $y = 1$

- Information flowed from x to y even though $y < x$
• Fenton’s Data Mark Machine detects implicit flows violating certification rules
Handling This (2)

- Raise class of variables assigned to in conditionals even when branch not taken
- Also, verify information flow requirements even when branch not taken
- Example:
 - In if \(x = 0 \) then \(z := 1 \), \(z \) raised to \(x \) whether or not \(x = 0 \)
 - Certification check in next statement, that \(z \leq y \), fails, as \(z = x \) from previous statement, and \(y \leq x \)
Handling This (3)

- Change classes only when explicit flows occur, but *all* flows (implicit as well as explicit) force certification checks.

- Example
 - When $x = 0$, first “if” sets z to Low then checks $x \leq z$
 - When $x = 1$, first “if” checks that $x \leq z$
 - This holds if and only if $x = \text{Low}$
 - Not possible as $y < x = \text{Low}$ and there is no such class.