May 15: Information Flow and Confinement

- Information flow for integrity policies
- Examples of information flow controls
 - Android phone
 - Firewalls
- Confinement
- Virtual machines
Integrity Mechanisms

- Biba: mathematical dual of Bell-LaPadula
- Same idea for all constraints, but the opposite
- In general: reverse direction of \leq and replace lub with glb
Assignment

\[x := y + z; \]

Information flows from \(y, z \) to \(x \), so for integrity this requires \(x \leq \text{glb}(y, z) \).

More generally:

\[y := f(x_1, \ldots, x_n) \]

the relation \(y \leq \text{glb}(x_1, \ldots, x_n) \) must hold.
Conditional Statement

\[
\text{if } x + y < z \text{ then } a := b \text{ else } d := b \times c - x;
\]

- The statement executed reveals information about \(x, y, z \), so \(\text{lub}(a, d) \leq \text{glb}(x, y, z) \)

More generally:

\[
\text{if } f(x_1, \ldots, x_n) \text{ then } S_1 \text{ else } S_2; \text{ end}
\]

- \(S_1, S_2 \) must be certified with respect to integrity
- \(\text{lub}(y \mid y \text{ target of assignment in } S_1, S_2) \leq \text{glb}(x_1, \ldots, x_n) \)
Example: Android Cellphones

• Usually apps ask for (and get) all permissions
• Ad libraries part of app, so have same permissions
• So app (and libraries) can access information on, about phone
 – Like address book
Information Flow!

• Here, information flowing illicitly out of phone
• So, how do we analyze this?
• Biba, with 2 integrity levels
 – Untainted (U)
 – Tainted (T)
 – $T < U$ (i.e., information can flow from untainted to tainted but not the other way)
Example Tool

- TaintDroid: dynamic flow analysis tool
 - Android native libraries are U
 - Those that communicate info externally are *taint sinks*
 - Objects are U or T, as these propagate throughout the system
 - A T object involving a taint sink: data going out of taint sink recorded
During App Operation

- Info flow rules (for integrity) modify tags as rules dictate
 - Android native libraries: external variables referenced, return values tagged based on knowledge of what the code does
- IPC: values in messages grouped by level
- Files: taint tag updated as file written; tag of file tied to variables as file is read
- Sensors: tagged depending on data
Effectiveness

• Out of 30 popular apps that made 105 network connections using data marked T
 – 2 sent cellphone ID info (like phone number) to server
 – 9 send device identifiers (2 didn’t notify the user they were doing this)
 – 15 sent location info to third parties (none notified the user they were doing this)
Firewalls

- Host that mediates access to a network
 - Blocks or allows access based on security policy
 - If rules applied at the packet level, *packet filtering firewall*
 - If rules applied at the application level, *proxy* or *application level firewall*
 - If it keeps track of state of each connection, it’s a *stateful firewall*
Examples

• Firewall checks all incoming email for malware, and discards letters with that

• Java applet coming from an untrusted source
 – On each HTTP connection, firewall analyzes connection to see if applet coming over
 – If so, analyze the applet to see if it is safe; discard the applet; or disable it (change “<applet>” to something else
DMZ

- Portion of a network separating a completely internal network from an external one
 - Internal firewall separates DMZ, internal network
 - External firewall separates DMZ, external network
 - Internal firewall more restrictive than external one (usually)
DMZ

• Idea: servers in DMZ serve as intermediaries
 – House externally visible web pages there
 – Email goes through a DMZ server

• If attacker compromises those systems, still must get through inner firewall to access company’s secret
DMZ Configuration

- Internet
- DMZ
- firewall
- internal network
DMZ Configuration

Diagram showing the DMZ configuration with connections between the Internet, outer firewall, DMZ, inner firewall, and internal network.
Confinement

• What is the problem?
• Isolation: virtual machines, sandboxes
• Detecting covert channels
Example Problem

• Server balances bank accounts for clients

• Server security issues:
 – Record correctly who used it
 – Send *only* balancing info to client

• Client security issues:
 – Log use correctly
 – Do not save or retransmit data client sends
Generalization

- Client sends request, data to server
- Server performs some function on data
- Server returns result to client
- Access controls:
 - Server must ensure the resources it accesses on behalf of client include *only* resources client is authorized to access
 - Server must ensure it does not reveal client’s data to any entity not authorized to see the client’s data
Confinement Problem

- Problem of preventing a server from leaking information that the user of the service considers confidential
Total Isolation

- Process cannot communicate with any other process
- Process cannot be observed

Impossible for this process to leak information
- Not practical as process uses observable resources such as CPU, secondary storage, networks, etc.
Example

• Processes p, q not allowed to communicate
 – But they share a file system!
• Communications protocol:
 – p sends a bit by creating a file called 0 or 1, then a second file called $send$
 • p waits until $send$ is deleted before repeating to send another bit
 – q waits until file $send$ exists, then looks for file 0 or 1; whichever exists is the bit
 • q then deletes 0, 1, and $send$ and waits until $send$ is recreated before repeating to read another bit
Covert Channel

- A path of communication not designed to be used for communication
- In example, file system is a (storage) covert channel
Rule of Transitive Confinement

• If p is confined to prevent leaking, and it invokes q, then q must be similarly confined to prevent leaking

• Rule: if a confined process invokes a second process, the second process must be as confined as the first
Lipner’s Notes

• All processes can obtain rough idea of time
 – Read system clock or wall clock time
 – Determine number of instructions executed

• All processes can manipulate time
 – Wait some interval of wall clock time
 – Execute a set number of instructions, then block
Kocher’s Attack

- This computes \(x = a^z \mod n \), where \(z = z_0 \ldots z_{k-1} \)

\[
\begin{align*}
x &:= 1; \quad \text{atmp} := a; \\
\text{for } i := 0 \text{ to } k - 1 \text{ do begin} \\
&\quad \text{if } z_i = 1 \text{ then} \\
&\quad\quad x := (x \times \text{atmp}) \mod n; \\
&\quad\quad \text{atmp} := (\text{atmp} \times \text{atmp}) \mod n; \\
\text{end} \\
\text{result} := x;
\end{align*}
\]

- Length of run time related to number of 1 bits in \(z \)
Isolation

• Present process with environment that appears to be a computer running only those processes being isolated
 – Process cannot access underlying computer system, any process(es) or resource(s) not part of that environment
 – A virtual machine

• Run process in environment that analyzes actions to determine if they leak information
 – Alters the interface between process(es) and computer
Virtual Machine

• Program that simulates hardware of a machine
 – Machine may be an existing, physical one or an abstract one

• Why?
 – Existing OSes do not need to be modified
 • Run under VMM, which enforces security policy
 • Effectively, VMM is a security kernel
VMM as Security Kernel

- VMM deals with subjects (the VMs)
 - Knows nothing about the processes within the VM
- VMM applies security checks to subjects
 - By transitivity, these controls apply to processes on VMs
- Thus, satisfies rule of transitive confinement
Example 1: KVM/370

- KVM/370 is security-enhanced version of VM/370 VMM
 - Goal: prevent communications between VMs of different security classes
 - Like VM/370, provides VMs with minidisks, sharing some portions of those disks
 - Unlike VM/370, mediates access to shared areas to limit communication in accordance with security policy
Example 2: VAX/VMM

- Can run either VMS or Ultrix
- 4 privilege levels for VM system
 - VM user, VM supervisor, VM executive, VM kernel (both physical executive)
- VMM runs in physical kernel mode
 - Only it can access certain resources
- VMM subjects: users and VMs
Example 2

- VMM has flat file system for itself
 - Rest of disk partitioned among VMs
 - VMs can use any file system structure
 - Each VM has its own set of file systems
 - Subjects, objects have security, integrity classes
 - Called access classes
 - VMM has sophisticated auditing mechanism
Problem

- Physical resources shared
 - System CPU, disks, etc.
- May share logical resources
 - Depends on how system is implemented
- Allows covert channels