
May 19: Design Principles and
Confinement

•  Principles of Secure Design
– One set; other sets say basically the same thing

•  Confinement, non-VM isolation
– Library operating systems
– Sandboxes
– Program modification
– Covert channels

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #1

Basis of Design Principles

•  Simplicity
– Less to go wrong
– Fewer possible inconsistencies
– Easy to understand

•  Restriction
– Minimize access
–  Inhibit communication

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #2

Least Privilege

•  A subject should be given only those
privileges necessary to complete its task
– Function, not identity, controls
– Rights added as needed, discarded after use
– Minimal protection domain

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #3

Related: Least Authority

•  Principle of Least Authority (POLA)
– Often considered the same as Principle of Least

Privilege
– Some make distinction:

•  Permissions control what subject can do to an object
directly

•  Authority controls what influence a subject has over
an object (directly or indirectly, through other
subjects)

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #4

Fail-Safe Defaults

•  Default action is to deny access
•  If action fails, system as secure as when

action began

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #5

Economy of Mechanism

•  Keep it as simple as possible
– KISS Principle

•  Simpler means less can go wrong
– And when errors occur, they are easier to

understand and fix
•  Interfaces and interactions

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #6

Complete Mediation

•  Check every access
•  Usually done once, on first action

– UNIX: access checked on open, not checked
thereafter

•  If permissions change after, may get
unauthorized access

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #7

Open Design

•  Security should not depend on secrecy of
design or implementation
– Popularly misunderstood to mean that source

code should be public
– “Security through obscurity”
– Does not apply to information such as

passwords or cryptographic keys

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #8

Separation of Privilege

•  Require multiple conditions to grant
privilege
– Separation of duty
– Defense in depth

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #9

Least Common Mechanism

•  Mechanisms should not be shared
–  Information can flow along shared channels
– Covert channels

•  Isolation
– Virtual machines
– Sandboxes

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #10

Least Astonishment

•  Security mechanisms should be designed so
users understand why the mechanism works
the way it does, and using mechanism is
simple
– Hide complexity introduced by security

mechanisms
– Ease of installation, configuration, use
– Human factors critical here

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #11

Related: Psychological
Acceptability

•  Security mechanisms should not add to
difficulty of accessing resource
–  Idealistic, as most mechanisms add some

difficulty
•  Even if only remembering a password

– Principle of Least Astonishment accepts this
•  Asks whether the difficulty is unexpected or too

much for relevant population of users

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #12

Key Points

•  Principles of secure design underlie all
security-related mechanisms

•  Require:
– Good understanding of goal of mechanism and

environment in which it is to be used
– Careful analysis and design
– Careful implementation

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #13

Library Operating Systems

•  Often process can optimize use of system
resources better than the operating system

•  Goal is to move as much of operating
system as is feasible to user level
– This minimizes context switches
–  It maximizes process flexibility

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #14

Library Operating Systems

•  It’s a library(-ies) that provide operating
system functionality at the user level

•  Develop kernel that:
– Uses hardware protection to prevent processes

from accessing memory space of others
– Controls access to physical resources that must

be shared by executing processes
– Everything else is in user space

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #15

Example

•  V++ Cache Kernel tracks OS that are in use
– Also handles process co-ordination

•  Page faults
– Application kernel loads new page mapping

descriptor into Cache Kernel

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #16

Example

•  Exokernel separates resource protection,
resource management

•  Aegis: small kernel providing interface to
hardware resources

•  ExOS: interface to Aegis that enables
process to use resources s appropriate
– Also provides resource protection

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #17

Drawbridge

•  Library OS, security monitor for Windows
– Security monitor provides interface to

underlying OS
•  Processes use library OS to access security

monitor interface
– All interactions go through it
– Library OS also provides application services

(frameworks, rendering engines)
May 19, 2017 ECS 235B Spring Quarter 2017 Slide #18

Drawbridge

•  Handles kernel dependencies using
emulator at lowest level of library OS
– So all server dependencies, Windows

subsystems moved into user layer
– User interaction by emulated device drivers that

tunnel I/O between desktop, security monitor
•  Processes isolated from one another

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #19

Drawbridge Validation

•  Malware deleting all registry keys affected
only that process

•  Keystroke logger captured keystrokes only
for that process

•  Attacks causing Internet Explorer to to
escape normal (protected) mode all
mitigated

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #20

Sandboxes

•  An environment in which actions are
restricted in accordance with security policy
– Limit execution environment as needed

•  Program not modified
•  Libraries, kernel modified to restrict actions

– Modify program to check, restrict actions
•  Like dynamic debuggers, profilers

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #21

Example: Janus

•  Implements sandbox in which system calls
checked
– Framework does runtime checking
– Modules determine which accesses allowed

•  Configuration file
–  Instructs loading of modules
– Also lists constraints

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #22

Configuration File
basic module
basic

define subprocess environment variables
putenv IFS=“\t\n “ PATH=/sbin:/bin:/usr/bin TZ=PST8PDT

deny access to everything except files under /usr
path deny read,write *
path allow read,write /usr/*
allow subprocess to read files in library directories
needed for dynamic loading
path allow read /lib/* /usr/lib/* /usr/local/lib/*
needed so child can execute programs
path allow read,exec /sbin/* /bin/* /usr/bin/*

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #23

How It Works
•  Framework builds list of relevant system calls

–  Then marks each with allowed, disallowed actions

•  When monitored system call executed
–  Framework checks arguments, validates that call is allowed for

those arguments
•  If not, returns failure
•  Otherwise, give control back to child, so normal system call proceeds

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #24

Use
•  Reading MIME Mail: fear is user sets mail reader to

display attachment using Postscript engine
–  Has mechanism to execute system-level commands
–  Embed a file deletion command in attachment …

•  Janus configured to disallow execution of any
subcommands by Postscript engine
–  Above attempt fails

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #25

Examples Limiting Environment
•  Java virtual machine

–  Security manager limits access of downloaded
programs as policy dictates

•  Sidewinder firewall
–  Type enforcement limits access
–  Policy fixed in kernel by vendor

•  Domain Type Enforcement
–  Enforcement mechanism for DTEL
–  Kernel enforces sandbox defined by system

administrator
May 19, 2017 ECS 235B Spring Quarter 2017 Slide #26

Program Modification

•  Idea is to change program itself to comply with
a stated security policy

•  Program can be rewritten to embed constraints
in it

•  Compiler can apply constraints as program
being compiled
–  Same for interpreter

•  Loader can apply constraints as program is
loaded for execution

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #27

Rewriting Program

Software fault isolation
•  Untrusted modules go into virtual segments
•  Flow of control remains in the segment
•  All memory accesses from within the

segment go to locations within the segment

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #28

Implementations

•  Put each module in separate segment
–  Unsafe instruction access address that can’t be

verified to be in the segment
•  Statically analyze program, identify all unsafe

instructions
•  When executed, check address is in segment

–  Check segment identifier of (virtual) address
–  Replace segment identifier of (virtual) address with

identifier of the segment

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #29

System Calls

•  In untrusted modules, could pose problems
– Close an open file trusted module depends on
– So replace system calls with calls to arbitration

code in its own segment
– Arbitration code determines whether to invoke

system call
•  Alternative: trusted, untrusted processes

– Trusted process handles all security-sensitive
accesses

May 19, 2017 ECS 235B Spring Quarter 2017 Slide #30

