Access Control Matrix
Attributes

• *attribute*: variable of a specific data type associated with an entity
• \(att(o) \): set of attribute values associated with \(o \), called the *attribute value tuple* of \(o \)
 • Each attribute is written \(o.a_i \), with value \(v \) drawn from set \(Va_i \)
• *attribute predicate*: boolean expression built from attributes and constants with appropriate operation and relation symbols
 • Unary predicate: built from one attribute
 • Binary predicate: built from two attributes
 • Can have as many attributes in a predicate as needed
 • Example: \(Alice.credit \geq 100.00 \)
Attribute Based Access Control Matrix (ABAM)

• Change access control matrix so rows correspond to subject and its attributes, and object and its attributes

• Note access control matrix discussed previously is special case
 • Just make the attribute sets be empty
Primitive Operations

• **enter, delete** as before

• **create subject** s **with attribute tuple** $att(s)$: create subject s with given attribute tuple; additionally, add an identity attribute with a unique value

• **create object** o **with attribute tuple** $att(o)$: create object o with given attribute tuple; additionally, add an identity attribute with a unique value

• **destroy** as before except it also deletes the associated attribute tuple

• **update attribute** $o.a_i$: update $att(o) = (v_1, \ldots, v_i, \ldots, v_n)$ to $att(o)' = (v_1, \ldots, v_i', \ldots, v_n)$, where $v_i, v_i' \in Va_i$, and $v_i \neq v_i'$
Commands

• Like previous commands, except that conditions may include attribute predicates

• Let \(p \) give \(q \) read rights over \(f \), if \(p \) owns \(f \) and value of \(p \)'s attribute jobcode is between 3 and 5 inclusive

\[
\text{command } \text{grant_read_file_attribute_3to5}(p, f, q) \\
\quad \text{if own in } A[p, f] \text{ and } 3 \leq p.\text{jobcode and } p.\text{jobcode} \leq 5 \\
\quad \text{then} \\
\quad \quad \text{enter } r \text{ into } A[q, f]; \\
\text{end}
\]
Foundational Results
Overview

• Safety Question
• HRU Model
• Take-Grant Protection Model
• SPM, ESPM
 • Multiparent joint creation
• Expressive power
• Typed Access Matrix Model
• Comparing properties of models
What Is “Secure”?

• Adding a generic right r where there was not one is “leaking”
 • In what follows, a right leaks if it was not present *initially*
 • Alternately: not present *in the previous state* (not discussed here)

• If a system S, beginning in initial state s_0, cannot leak right r, it is *safe with respect to the right* r
 • Otherwise it is called *unsafe with respect to the right* r
Safety Question

• Is there an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?
 • Here, “safe” = “secure” for an abstract model
Mono-Operational Commands

• Answer: yes

• Sketch of proof:
 Consider minimal sequence of commands c_1, \ldots, c_k to leak the right.
 • Can omit delete, destroy
 • Can merge all creates into one
 Worst case: insert every right into every entry; with s subjects and o objects initially, and n rights, upper bound is $k \leq n(s+1)(o+1)$
General Case

• Answer: no

• Sketch of proof:
 Reduce halting problem to safety problem
 Turing Machine review:
 • Infinite tape in one direction
 • States K, symbols M; distinguished blank b
 • Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
 • Halting state is q_f, TM halts when it enters this state
Mapping

Current state is k

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>B</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>C k</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td>D end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
After $\delta(k, C) = (k_1, X, R)$, where k is the current state and k_1 the next state.
Command Mapping

- $\delta(k, C) = (k_1, X, R)$ at intermediate becomes

```plaintext
command $c_{k,C}(s_3,s_4)$
if own in $A[s_3,s_4]$ and $k$ in $A[s_3,s_3]$ and $C$ in $A[s_3,s_3]$
  then
  delete $k$ from $A[s_3,s_3]$;
  delete $C$ from $A[s_3,s_3]$;
  enter $X$ into $A[s_3,s_3]$;
  enter $k_1$ into $A[s_4,s_4]$;
end
```
After $\delta(k_1, D) = (k_2, Y, R)$ where k_1 is the current state and k_2 the next state.
Command Mapping

• \(\delta(k_1, D) = (k_2, Y, R) \) at end becomes

```latex
\text{command crightmost}_{k,c}(s_4, s_5) \\
\text{if end in } A[s_4, s_4] \text{ and } k_1 \text{ in } A[s_4, s_4] \\
\quad \text{and } D \text{ in } A[s_4, s_4] \\
\text{then} \\
\quad \text{delete } end \text{ from } A[s_4, s_4]; \\
\quad \text{delete } k_1 \text{ from } A[s_4, s_4]; \\
\quad \text{delete } D \text{ from } A[s_4, s_4]; \\
\quad \text{enter } Y \text{ into } A[s_4, s_4]; \\
\quad \text{create subject } s_5; \\
\quad \text{enter } own \text{ into } A[s_4, s_5]; \\
\quad \text{enter } end \text{ into } A[s_5, s_5]; \\
\quad \text{enter } k_2 \text{ into } A[s_5, s_5]; \\
\text{end}
```
Rest of Proof

• Protection system exactly simulates a TM
 • Exactly 1 end right in ACM
 • 1 right in entries corresponds to state
 • Thus, at most 1 applicable command

• If TM enters state q_f, then right has leaked

• If safety question decidable, then represent TM as above and determine if q_f leaks
 • Implies halting problem decidable

• Conclusion: safety question undecidable
Other Results

- Set of unsafe systems is recursively enumerable
- Delete *create* primitive; then safety question is complete in P-SPACE
- Delete *destroy*, *delete* primitives; then safety question is undecidable
 - Systems are monotonic
- Safety question for biconditional protection systems is decidable
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with *create*, *enter*, *delete* (and no *destroy*) is decidable.
Take-Grant Protection Model

• A specific (not generic) system
 • Set of rules for state transitions
• Safety decidable, and in time linear with the size of the system
• Goal: find conditions under which rights can be transferred from one entity to another in the system
System

- objects (files, ...)
- subjects (users, processes, ...)
- don't care (either a subject or an object)

$G \vdash_x G'$ apply a rewriting rule x (witness) to G to get G'

$G \vdash^* G'$ apply a sequence of rewriting rules (witness) to G to get G'

$R = \{ t, g, r, w, \ldots \}$ set of rights
Rules

take

grant

\[t \quad \alpha \quad \vdash \quad t \quad \alpha \]

\[g \quad \alpha \quad \vdash \quad g \quad \alpha \]
More Rules

These four rules are called the *de jure* rules
Symmetry

1. \(x \) creates \((tg \ to \ new) \ v\)
2. \(z \) takes \((g \ to \ v)\) from \(x\)
3. \(z \) grants \((\alpha \ to \ y)\) to \(v\)
4. \(x \) takes \((\alpha \ to \ y)\) from \(v\)

Similar result for grant
Islands

• *tg*-path: path of distinct vertices connected by edges labeled *t* or *g*
 • Call them “*tg*-connected”

• island: maximal *tg*-connected subject-only subgraph
 • Any right one vertex has can be shared with any other vertex
Initial, Terminal Spans

- *initial span* from x to y
 - x subject
 - tg-path between x, y with word in $\{t^*g\} \cup \{v\}$
 - Means x can give rights it has to y

- *terminal span* from x to y
 - x subject
 - tg-path between x, y with word in $\{t^*\} \cup \{v\}$
 - Means x can acquire any rights y has
Bridges

• bridge: tg-path between subjects x, y, with associated word in
 \{ $\overrightarrow{t^*}$, $\overrightarrow{t^*}$, \overrightarrow{tg} $\overrightarrow{t^*}$, \overrightarrow{tg} $\overrightarrow{t^*}$ \}

 • rights can be transferred between the two endpoints
 • not an island as intermediate vertices are objects
Example

- islands: \{ p, u \} \{ w \} \{ y, s' \}
- bridges: uvw; wxy
- initial span: p (associated word v)
- terminal span: s's (associated word t)
can•share Predicate

Definition:

• $can\cdot share(r, x, y, G_0)$ if, and only if, there is a sequence of protection graphs G_0, \ldots, G_n such that $G_0 \vdash^* G_n$ using only de jure rules and in G_n there is an edge from x to y labeled r.
can•share Theorem

• can•share(r, x, y, G₀) if, and only if, there is an edge from x to y labeled r in G₀, or the following hold simultaneously:
 • There is an s in G₀ with an s-to-y edge labeled r
 • There is a subject x’ = x or initially spans to x
 • There is a subject s’ = s or terminally spans to s
 • There are islands I₁, ..., Iₖ connected by bridges, and x’ in I₁ and s’ in Iₖ
Outline of Proof

• s has r rights over y
• s’ acquires r rights over y from s
 • Definition of terminal span
• x’ acquires r rights over y from s’
 • Repeated application of sharing among vertices in islands, passing rights along bridges
• x’ gives r rights over y to x
 • Definition of initial span
Example Interpretation

• ACM is generic
 • Can be applied in any situation

• Take-Grant has specific rules, rights
 • Can be applied in situations matching rules, rights

• Question: what states can evolve from a system that is modeled using the Take-Grant Model?
Take-Grant Generated Systems

• Theorem: G_0 protection graph with 1 vertex, no edges; R set of rights. Then $G_0 \vdash ^* G$ iff:
 • G finite directed graph consisting of subjects, objects, edges
 • Edges labeled from nonempty subsets of R
 • At least one vertex in G has no incoming edges
Outline of Proof

⇒: By construction; G final graph in theorem
- Let x_1, \ldots, x_n be subjects in G
- Let x_1 have no incoming edges
- Now construct G' as follows:
 1. Do “x_1 creates ($\alpha \cup \{ g \}$ to) new subject x_i”
 2. For all (x_i, x_j) where x_i has a rights over x_j, do
 “x_1 grants (α to x_j) to x_i”
 3. Let β be rights x_i has over x_j in G. Do
 “x_1 removes (($\alpha \cup \{ g \} - \beta$ to) x_j”
- Now G' is desired G
Outline of Proof

\iff: Let v be initial subject, and $G_0 \vdash * \ G$

- Inspection of rules gives:
 - G is finite
 - G is a directed graph
 - Subjects and objects only
 - All edges labeled with nonempty subsets of R

- Limits of rules:
 - None allow vertices to be deleted so v in G
 - None add incoming edges to vertices without incoming edges, so v has no incoming edges
Example: Shared Buffer

- Goal: \(p, q \) to communicate through shared buffer \(b \) controlled by trusted entity \(s \)
 1. \(s \) creates (\(\{r, w\} \) to new object) \(b \)
 2. \(s \) grants (\(\{r, w\} \) to \(b \)) to \(p \)
 3. \(s \) grants (\(\{r, w\} \) to \(b \)) to \(q \)