Safety Question

• In this model:
 Is it possible to have a derivable state with $X/r:c$ in $\text{dom}(A)$, or does there exist a subject B with ticket X/rc in the initial state or which can demand X/rc and $\tau(X)/r:c$ in $\text{flow}^*(B,A)$?

• To answer: construct maximal state and test
 • Consider acyclic attenuating schemes; how do we construct maximal state?
Intuition

• Consider state h.

• State u corresponds to h but with minimal number of new entities created such that maximal state m can be derived with no create operations
 • So if in history from h to m, subject X creates two entities of type a, in u only one would be created; surrogate for both

• m can be derived from u in polynomial time, so if u can be created by adding a finite number of subjects to h, safety question decidable.
Fully Unfolded State

• State u derived from state 0 as follows:
 • delete all loops in cc; new relation cc'
 • mark all subjects as folded
 • while any $X \in SUB^0$ is folded
 • mark it unfolded
 • if X can create entity Y of type y, it does so (call this the y-surrogate of X); if entity $Y \in SUB^g$, mark it folded
 • if any subject in state h can create an entity of its own type, do so

• Now in state u
Termination

• First loop terminates as SUB^0 finite

• Second loop terminates:
 • Each subject in SUB^0 can create at most $|TS|$ children, and $|TS|$ is finite
 • Each folded subject in $|SUB^i|$ can create at most $|TS| - i$ children
 • When $i = |TS|$, subject cannot create more children; thus, folded is finite
 • Each loop removes one element

• Third loop terminates as SUB^h is finite
Surrogate

• Intuition: surrogate collapses multiple subjects of same type into single subject that acts for all of them

• Definition: given initial state 0, for every derivable state h define *surrogate function* $\sigma: \text{ENT}^h \rightarrow \text{ENT}^h$ by:

 • if X in ENT^0, then $\sigma(X) = X$

 • if Y creates X and $\tau(Y) = \tau(X)$, then $\sigma(X) = \sigma(Y)$

 • if Y creates X and $\tau(Y) \neq \tau(X)$, then $\sigma(X) = \tau(Y)$-surrogate of $\sigma(Y)$
Implications

• $\tau(\sigma(X)) = \tau(X)$

• If $\tau(X) = \tau(Y)$, then $\sigma(X) = \sigma(Y)$

• If $\tau(X) \neq \tau(Y)$, then
 • $\sigma(X)$ creates $\sigma(Y)$ in the construction of u
 • $\sigma(X)$ creates entities X' of type $\tau(X') = \tau(\sigma(X))$

• From these, for a system with an acyclic attenuating scheme, if X creates Y, then tickets that would be introduced by pretending that $\sigma(X)$ creates $\sigma(Y)$ are in $\text{dom}^u(\sigma(X))$ and $\text{dom}^u(\sigma(Y))$
Deriving Maximal State

• Idea
 • Reorder operations so that all creates come first and replace history with equivalent one using surrogates
 • Show maximal state of new history is also that of original history
 • Show maximal state can be derived from initial state
Reordering

• H legal history deriving state h from state 0
• Order operations: first create, then demand, then copy operations
• Build new history G from H as follows:
 • Delete all creates
 • “X demands $Y/r:c$” becomes “$\sigma(X)$ demands $\sigma(Y)/r:c$”
 • “Y copies $X/r:c$ from Y” becomes “$\sigma(Y)$ copies $\sigma(X)/r:c$ from $\sigma(Y)$”
Tickets in Parallel

• Lemma
 • All transitions in G legal; if $X/r:c \in \text{dom}^h(Y)$, then $\sigma(X)/r:c \in \text{dom}^h(\sigma(Y))$

• Outline of proof: induct on number of copy operations in H
Basis

• H has create, demand only; so G has demand only. s preserves type, so by construction every demand operation in G legal.

• 3 ways for $X/r::c$ to be in $dom^h(Y)$:

 • $X/r::c \in dom^0(Y)$ means $X, Y \in ENT^0$, so trivially $\sigma(X)/r::c \in dom^g(\sigma(Y))$ holds

 • A create added $X/r::c \in dom^h(Y)$: previous lemma says $\sigma(X)/r::c \in dom^g(\sigma(Y))$ holds

 • A demand added $X/r::c \in dom^h(Y)$: corresponding demand operation in G gives $\sigma(X)/r::c \in dom^g(\sigma(Y))$
Hypothesis

• Claim holds for all histories with k copy operations
• History H has $k+1$ copy operations
 • H' initial sequence of H composed of k copy operations
 • h' state derived from H'
Step

• G' sequence of modified operations corresponding to H'; g' derived state
 • G' legal history by hypothesis
• Final operation is “Z copied $X/r:c$ from Y”
 • So h, h' differ by at most $X/r:c \in \text{dom}^h(Z)$
 • Construction of G means final operation is $\sigma(X)/r:c \in \text{dom}^g(\sigma(Y))$
• Proves second part of claim
Step

- H’legal, so for H to be legal, we have:
 1. $X/rc \in dom^h(Y)$
 2. $link_i^h(Y, Z)$
 3. $\tau(X/r:c) \in f_i(\tau(Y), \tau(Z))$

- By IH, 1, 2, as $X/r:c \in dom^h(Y)$,

 $\sigma(X)/r:c \in dom^g(\sigma(Y))$ and $link_i^g(\sigma(Y), \sigma(Z))$

- As σ preserves type, IH and 3 imply

 $\tau(\sigma(X)/r:c) \in f_i(\tau((\sigma(Y)), \tau(\sigma(Z))))$

- IH says G’legal, so G is legal
Corollary

• If $link_i^h(X, Y)$, then $link_i^g(\sigma(X), \sigma(Y))$
Main Theorem

• System has acyclic attenuating scheme

• For every history H deriving state h from initial state, there is a history G without create operations that derives g from the fully unfolded state u such that

$$(\forall X,Y \in SUB^h)[flow^h(X, Y) \subseteq flow^g(\sigma(X), \sigma(Y))]$$

• Meaning: any history derived from an initial state can be simulated by corresponding history applied to the fully unfolded state derived from the initial state
Proof

• Outline of proof: show that every $path^h(X,Y)$ has corresponding $path^g(\sigma(X), \sigma(Y))$ such that $cap(path^h(X,Y)) = cap(path^g(\sigma(X), \sigma(Y)))$
 • Then corresponding sets of tickets flow through systems derived from H and G
 • As initial states correspond, so do those systems

• Proof by induction on number of links
Basis and Hypothesis

• Length of $\text{path}^h(X, Y) = 1$. By definition of path^h, $\text{link}^h_i(X, Y)$, hence $\text{link}^g_i(\sigma(X), \sigma(Y))$. As σ preserves type, this means

$$\text{cap}(\text{path}^h(X, Y)) = \text{cap}(\text{path}^g(\sigma(X), \sigma(Y)))$$

• Now assume this is true when $\text{path}^h(X, Y)$ has length k
Step

• Let $\text{path}^h(X, Y)$ have length $k+1$. Then there is a Z such that $\text{path}^h(X, Z)$ has length k and $\text{link}_j^h(Z, Y)$.

• By IH, there is a $\text{path}^g(\sigma(X), \sigma(Z))$ with same capacity as $\text{path}^h(X, Z)$

• By corollary, $\text{link}_j^g(\sigma(Z), \sigma(Y))$

• As σ preserves type, there is $\text{path}^g(\sigma(X), \sigma(Y))$ with

\[
\text{cap}(\text{path}^h(X, Y)) = \text{cap}(\text{path}^g(\sigma(X), \sigma(Y)))
\]
Implication

• Let maximal state corresponding to \(v\) be \(#u\)
 • Deriving history has no creates
 • By theorem,
 \[
 (\forall X, Y \in SUB^h)[flow^h(X, Y) \subseteq flow^{#u}(\sigma(X), \sigma(Y))]
 \]
 • If \(X \in SUB^0\), \(\sigma(X) = X\), so:
 \[
 (\forall X, Y \in SUB^0)[flow^h(X, Y) \subseteq flow^{#u}(X, Y)]
 \]
• So \(#u\) is maximal state for system with acyclic attenuating scheme
 • \(#u\) derivable from \(u\) in time polynomial to \(|SUB^u|\)
 • Worst case computation for \(flow^{#u}\) is exponential in \(|TS|\)
Safety Result

• If the scheme is acyclic and attenuating, the safety question is decidable
Expressive Power

• How do the sets of systems that models can describe compare?
 • If HRU equivalent to SPM, SPM provides more specific answer to safety question
 • If HRU describes more systems, SPM applies only to the systems it can describe
HRU vs. SPM

• SPM more abstract
 • Analyses focus on limits of model, not details of representation
• HRU allows revocation
 • SMP has no equivalent to delete, destroy
• HRU allows multiparent creates
 • SMP cannot express multiparent creates easily, and not at all if the parents are of different types because can•create allows for only one type of creator
Multiparent Create

• Solves mutual suspicion problem
 • Create proxy jointly, each gives it needed rights

• In HRU:

  ```
  command multicreate(s_0, s_1, o)
  if r in a[s_0, s_1] and r in a[s_1, s_0] then
    create object o;
    enter r into a[s_0, o];
    enter r into a[s_1, o];
  end
  ```
SPM and Multiparent Create

• cc extended in obvious way
 • $cc \subseteq TS \times \ldots \times TS \times T$

• Symbols
 • X_1, \ldots, X_n parents, Y created
 • $R_{1,i}, R_{2,i}, R_3, R_{4,i} \subseteq R$

• Rules
 • $cr_{P,i}(\tau(X_1), \ldots, \tau(X_n)) = Y/R_{1,1} \cup X_i/R_{2,i}$
 • $cr_{C}(\tau(X_1), \ldots, \tau(X_n)) = Y/R_3 \cup X_1/R_{4,1} \cup \ldots \cup X_n/R_{4,n}$
Example

• Anna, Bill must do something cooperatively
 • But they don’t trust each other

• Jointly create a proxy
 • Each gives proxy only necessary rights

• In ESPM:
 • Anna, Bill type a; proxy type p; right $x \in R$
 • $cc(a, a) = p$
 • $cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 • $cr_{proxy}(a, a, p) = \{\text{Anna}/x, \text{Bill}//x\}$
2-Parent Joint Create Suffices

• Goal: emulate 3-parent joint create with 2-parent joint create

• Definition of 3-parent joint create (subjects P_1, P_2, P_3; child C):
 • $cc(\tau(P_1), \tau(P_2), \tau(P_3)) = Z \subseteq T$
 • $cr_{P_1}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{1,1} \cup P_1/R_{2,1}$
 • $cr_{P_2}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{2,1} \cup P_2/R_{2,2}$
 • $cr_{P_3}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{3,1} \cup P_3/R_{2,3}$
General Approach

• Define agents for parents and child
 • Agents act as surrogates for parents
 • If create fails, parents have no extra rights
 • If create succeeds, parents, child have exactly same rights as in 3-parent creates
 • Only extra rights are to agents (which are never used again, and so these rights are irrelevant)
Entities and Types

• Parents P_1, P_2, P_3 have types p_1, p_2, p_3
• Child C of type c
• Parent agents A_1, A_2, A_3 of types a_1, a_2, a_3
• Child agent S of type s
• Type t is parentage
 • if $X/t \in \text{dom}(Y)$, X is Y’s parent
• Types t, a_1, a_2, a_3, s are new types
can\textbullet create

- Following added to can\textbullet create:
 - $cc(p_1) = a_1$
 - $cc(p_2, a_1) = a_2$
 - $cc(p_3, a_2) = a_3$
 - Parents creating their agents; note agents have maximum of 2 parents
 - $cc(a_3) = s$
 - Agent of all parents creates agent of child
 - $cc(s) = c$
 - Agent of child creates child
Creation Rules

- Following added to create rule:
 - \(cr_p(p_1, a_1) = \emptyset \)
 - \(cr_C(p_1, a_1) = p_1/Rtc \)
 - Agent’s parent set to creating parent; agent has all rights over parent
 - \(cr_{P\text{first}}(p_2, a_1, a_2) = \emptyset \)
 - \(cr_{P\text{second}}(p_2, a_1, a_2) = \emptyset \)
 - \(cr_C(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc \)
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
Creation Rules

• $cr_{P_{\text{first}}}(p_3, a_2, a_3) = \emptyset$
• $cr_{P_{\text{second}}}(p_3, a_2, a_3) = \emptyset$
• $cr_{C}(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc$
 • Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
• $cr_p(a_3, s) = \emptyset$
• $cr_{C}(a_3, s) = a_3/tc$
 • Child’s agent has third agent as parent $cr_p(a_3, s) = \emptyset$
• $cr_p(s, c) = C/Rtc$
• $cr_{C}(s, c) = c/R_3t$
 • Child’s agent gets full rights over child; child gets R_3 rights over agent
Link Predicates

• Idea: no tickets to parents until child created
 • Done by requiring each agent to have its own parent rights
 • \(\text{link}_1(A_2, A_1) = A_1/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2) \)
 • \(\text{link}_1(A_3, A_2) = A_2/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3) \)
 • \(\text{link}_2(S, A_3) = A_3/t \in \text{dom}(S) \land C/t \in \text{dom}(C) \)
 • \(\text{link}_3(A_1, C) = C/t \in \text{dom}(A_1) \)
 • \(\text{link}_3(A_2, C) = C/t \in \text{dom}(A_2) \)
 • \(\text{link}_3(A_3, C) = C/t \in \text{dom}(A_3) \)
 • \(\text{link}_4(A_1, P_1) = P_1/t \in \text{dom}(A_1) \land A_1/t \in \text{dom}(A_1) \)
 • \(\text{link}_4(A_2, P_2) = P_2/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2) \)
 • \(\text{link}_4(A_3, P_3) = P_3/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3) \)
Filter Functions

• \(f_1(a_2, a_1) = a_1/t \cup c/Rtc \)
• \(f_1(a_3, a_2) = a_2/t \cup c/Rtc \)
• \(f_2(s, a_3) = a_3/t \cup c/Rtc \)
• \(f_3(a_1, c) = p_1/R_{4,1} \)
• \(f_3(a_2, c) = p_2/R_{4,2} \)
• \(f_3(a_3, c) = p_3/R_{4,3} \)
• \(f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1} \)
• \(f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2} \)
• \(f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3} \)
Construction

Create A_1, A_2, A_3, S, C; then

- P_1 has no relevant tickets
- P_2 has no relevant tickets
- P_3 has no relevant tickets
- A_1 has P_1/Rtc
- A_2 has $P_2/Rtc \cup A_1/tc$
- A_3 has $P_3/Rtc \cup A_2/tc$
- S has $A_3/tc \cup C/Rtc$
- C has C/R_3t
Construction

• Only $link_2(S, A_3)$ true \Rightarrow apply f_2
 • A_3 has $P_3/Rtc \cup A_2/t \cup A_3/t \cup C/Rtc$

• Now $link_1(A_3, A_2)$ true \Rightarrow apply f_1
 • A_2 has $P_2/Rtc \cup A_1/tc \cup A_2/t \cup C/Rtc$

• Now $link_1(A_2, A_1)$ true \Rightarrow apply f_1
 • A_1 has $P_2/Rtc \cup A_1/t \cup C/Rtc$

• Now all $link_3$s true \Rightarrow apply f_3
 • C has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$
Finish Construction

• Now $link_4$ is true \Rightarrow apply f_4
 • P_1 has $C/R_{1,1} \cup P_1/R_{2,1}$
 • P_2 has $C/R_{1,2} \cup P_2/R_{2,2}$
 • P_3 has $C/R_{1,3} \cup P_3/R_{2,3}$

• 3-parent joint create gives same rights to P_1, P_2, P_3, C

• If create of C fails, $link_2$ fails, so construction fails
Theorem

• The two-parent joint creation operation can implement an \(n \)-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.

• **Proof**: by construction, as above
 • Difference is that the two systems need not start at the same initial state
Theorems

• Monotonic ESPM and the monotonic HRU model are equivalent.
• Safety question in ESPM also decidable if acyclic attenuating scheme
 • Proof similar to that for SPM
Expressiveness

- Graph-based representation to compare models

- Graph
 - Vertex: represents entity, has static type
 - Edge: represents right, has static type

- Graph rewriting rules:
 - *Initial state operations* create graph in a particular state
 - *Node creation operations* add nodes, incoming edges
 - *Edge adding operations* add new edges between existing vertices
Example: 3-Parent Joint Creation

• Simulate with 2-parent
 • Nodes P_1, P_2, P_3 parents
 • Create node C with type c with edges of type e
 • Add node A_1 of type a and edge from P_1 to A_1 of type e'
Next Step

• A_1, P_2 create A_2; A_2, P_3 create A_3
• Type of nodes, edges are a and e'

\[\text{Diagram:} \]

- P_1 connected to A_1
- P_2 connected to A_2
- P_3 connected to A_3
- Arrows indicate direction of edges
Next Step

- A_3 creates S, of type a
- S creates C, of type c
Last Step

• Edge adding operations:
 • $P_1 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_1 to C edge type e
 • $P_2 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_2 to C edge type e
 • $P_3 \rightarrow A_3 \rightarrow S \rightarrow C$: P_3 to C edge type e
Definitions

• *Scheme*: graph representation as above
• *Model*: set of schemes
• Schemes A, B correspond if graph for both is identical when all nodes with types not in A and edges with types in A are deleted
Example

• Above 2-parent joint creation simulation in scheme *TWO*
• Equivalent to 3-parent joint creation scheme *THREE* in which P_1, P_2, P_3, C are of same type as in *TWO*, and edges from P_1, P_2, P_3 to C are of type e, and no types a and e' exist in *TWO*
Simulation

Scheme A simulates scheme B iff

- every state B can reach has a corresponding state in A that A can reach; and

- every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach
 - The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of $THREE$
Expressive Power

• If there is a scheme in MA that no scheme in MB can simulate, MB less expressive than MA
• If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA
• If MA as expressive as MB and vice versa, MA and MB equivalent
Example

• Scheme A in model M
 • Nodes X_1, X_2, X_3
 • 2-parent joint create
 • 1 node type, 1 edge type
 • No edge adding operations
 • Initial state: X_1, X_2, X_3, no edges

• Scheme B in model N
 • All same as A except no 2-parent joint create
 • 1-parent create

• Which is more expressive?
Can A Simulate B?

• Scheme A simulates 1-parent create: have both parents be same node
 • Model M as expressive as model N
Can B Simulate A?

- Suppose X_1, X_2 jointly create Y in A
 - Edges from X_1, X_2 to Y, no edge from X_3 to Y
- Can B simulate this?
 - Without loss of generality, X_1 creates Y
 - Must have edge adding operation to add edge from X_2 to Y
 - One type of node, one type of edge, so operation can add edge between any 2 nodes
No

• All nodes in A have even number of incoming edges
 • 2-parent create adds 2 incoming edges
• Edge adding operation in B that can edge from X_2 to C can add one from X_3 to C
 • A cannot enter this state
 • B cannot transition to a state in which Y has even number of incoming edges
 • No remove rule
• So B cannot simulate A; N less expressive than M
Theorem

• Monotonic single-parent models are less expressive than monotonic multiparent models

• Proof by contradiction
 • Scheme A is multiparent model
 • Scheme B is single parent create
 • Claim: B can simulate A, without assumption that they start in the same initial state
 • Note: example assumed same initial state
Outline of Proof

• \(X_1, X_2\) nodes in \(A\)
 • They create \(Y_1, Y_2, Y_3\) using multiparent create rule
 • \(Y_1, Y_2\) create \(Z\), again using multiparent create rule
 • Note: no edge from \(Y_3\) to \(Z\) can be added, as \(A\) has no edge-adding operation
Outline of Proof

- W, X_1, X_2 nodes in B
 - W creates Y_1, Y_2, Y_3 using single parent create rule, and adds edges for X_1, X_2 to all using edge adding rule
 - Y_1 creates Z, again using single parent create rule; now must add edge from Y_2 to Z to simulate A
 - Use same edge adding rule to add edge from Y_3 to Z: cannot duplicate this in scheme A!
Meaning

• Scheme B cannot simulate scheme A, contradicting hypothesis
• ESPM more expressive than SPM
 • ESPM multiparent and monotonic
 • SPM monotonic but single parent
Typed Access Matrix Model

• Like ACM, but with set of types T
 • All subjects, objects have types
 • Set of types for subjects TS

• Protection state is (S, O, τ, A)
 • $\tau:O \rightarrow T$ specifies type of each object
 • If X subject, $\tau(X)$ in TS
 • If X object, $\tau(X)$ in $T - TS$
Create Rules

• Subject creation
 • create subject s of type ts
 • s must not exist as subject or object when operation executed
 • ts ∈ TS

• Object creation
 • create object o of type to
 • o must not exist as subject or object when operation executed
 • to ∈ T – TS
Create Subject

• Precondition: \(s \notin S \)
• Primitive command: **create subject** \(s \) **of type** \(t \)
• Postconditions:
 • \(S' = S \cup \{s\}, O' = O \cup \{s\} \)
 • \((\forall y \in O)[\tau'(y) = \tau(y)], \tau'(s) = t\)
 • \((\forall y \in O')[a'[s, y] = \emptyset], (\forall x \in S')[a'[x, s] = \emptyset]\)
 • \((\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]\)
Create Object

- Precondition: \(o \not\in O \)
- Primitive command: \texttt{create object} \(o \) \texttt{of type} \(t \)
- Postconditions:
 - \(S' = S, O' = O \cup \{ o \} \)
 - \((\forall y \in O)[\tau'(y) = \tau(y)], \tau'(o) = t\)
 - \((\forall x \in S')[a'[x, o] = \emptyset]\)
 - \((\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]\)
Definitions

• MTAM Model: TAM model without delete, destroy
 • MTAM is Monotonic TAM

• $\alpha(x_1:t_1, ..., x_n:t_n)$ create command
 • t_i child type in α if any of create subject x_i of type t_i or create object x_i of type t_i occur in α
 • t_i parent type otherwise
Cyclic Creates

\[\text{command } cry\cdot havoc(s_1 : u, s_2 : u, o_1 : v, o_2 : v, o_3 : w, o_4 : w)\]

create subject \(s_1\) of type \(u\);
create object \(o_1\) of type \(v\);
create object \(o_3\) of type \(w\);
enter \(r\) into \(a[s_2, s_1]\);
enter \(r\) into \(a[s_2, o_2]\);
enter \(r\) into \(a[s_2, o_4]\)
end
Creation Graph

- \(u, v, w\) child types
- \(u, v, w\) also parent types
- Graph: lines from parent types to child types
- This one has cycles
command $cry \cdot havoc(s_1 : u, \ s_2 : u, \ o_1 : v, \ o_3 : w)$

create object o_1 of type v;
create object o_3 of type w;
enter r into $a[s_2, \ s_1]$;
enter r into $a[s_2, \ o_1]$;
enter r into $a[s_2, \ o_3]$

end
Creation Graph

- v, w child types
- u parent type
- Graph: lines from parent types to child types
- This one has no cycles
Theorems

• Safety decidable for systems with acyclic MTAM schemes
 • In fact, it’s NP-hard

• Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 • “Ternary” means commands have no more than 3 parameters
 • Equivalent in expressive power to MTAM
Security Properties

• Question: given two models, do they have the same security properties?
 • First comes theory
 • Then comes an example comparison

• Basic idea: view access request as query asking if subject has right to perform action on object
Alternate Definition of “Scheme”

• Σ set of states
• Q set of queries
• e: Σ × Q → \{true, false\}
 • Called entailment relation
• T set of state transition rules
• (Σ, Q, e, T) is an access control scheme
Alternate Definition of “Scheme”

• s tries to access o
 • Corresponds to query $q \in Q$

• If state $\sigma \in \Sigma$ allows access, then $e(\sigma, q) = \text{true}$; otherwise, $e(\sigma, q) = \text{false}$

• Write change of state from σ_0 to σ_1 as $\sigma_0 \mapsto \sigma_1$
 • Emphasizing we’re looking at permissions
 • Multiple transitions are $\sigma_0 \mapsto^* \sigma_n$
 • Σ_n said to be τ-reachable from σ_0
Example: Take-Grant

- Σ set of all possible protection graphs
- Q set of queries
 \[\{ \text{can}\cdot\text{share}(\alpha, v_1, v_2, G_0) \mid \alpha \in R, v_1, v_2 \in G_0 \} \]
- $e(\sigma_0, q) = true$ if q holds; $e(\sigma_0, q) = false$ if not
- T set of sequences of take, grant, create, remove rules
Security Analysis Instance

• Let \((\Sigma, Q, e, T)\) be an access control scheme
• Tuple \((\sigma, q, \tau, \Pi)\) is security analysis instance, where:
 • \(\sigma \in \Sigma\) – \(\tau \in T\)
 • \(q \in Q\) – \(\Pi\) is \(\forall\) or \(\exists\)
• If \(\Pi\) is \(\exists\), existential security analysis
 • Is there a state \(\sigma'\) such that \(\sigma \xrightarrow{\tau^*} \sigma', e(\sigma', q) = true\)?
• If \(\Pi\) is \(\forall\), universal security analysis
 • For all states \(\sigma'\) such that \(\sigma \xrightarrow{\tau^*} \sigma'\), is \(e(\sigma', q) = true\)?
Example: Take-Grant

• $\sigma_0 = G_0$
• q is can•share(r, v_1, v_2, G_0)
• τ is sequence of take-grant rules
• Π is \exists
• Security analysis instance examines whether v_1 has r rights over v_2 in graph with initial state G_0
• So safety question is security analysis instance
Comparing Two Models

- Each query in A corresponds to a query in B
- Each (state, state transition) in A corresponds to (state, state transition) in B

Formally:

- $A = (\Sigma^A, Q^A, e^A, T^A)$ and $B = (\Sigma^B, Q^B, e^B, T^B)$
- mapping from A to B is:
 - $f : (\Sigma^A \times T^A) \cup Q^A \rightarrow (\Sigma^B \times T^B) \cup Q^B$
Image of Instance

• f mapping from A to B
• image of a security analysis instance
 $(\sigma^A, q^A, \tau^A, \Pi)$ under f is $(\sigma^B, q^B, \tau^B, \Pi)$,
 where:
 • $f((\sigma^A, \tau^A)) = (\sigma^B, \tau^B)$
 • $f(q^A) = q^B$
• f is security-preserving if every security analysis instance in A is true iff its image is true
Composition of Queries

• Let \((\Sigma, Q, e, T)\) be an access control scheme

• Tuple \((\sigma, \varphi, \tau, \Pi)\) is compositional security analysis instance, where \(\varphi\) is propositional logic formula of queries from \(Q\)

• \textit{image of compositional security analysis instance} defined similarly to previous

• \(f\) is strongly security-preserving if every compositional security analysis instance in \(A\) is true iff its image is true
State-Matching Reduction

• $A = (\Sigma^A, Q^A, e^A, T^A), \ B = (\Sigma^B, Q^B, e^B, T^B)$, f mapping from A to B

• σ^A, σ^B equivalent under the mapping f when
 • $e^A(\sigma^A, q^A) = e^B(\sigma^B, q^B)$

• f state-matching reduction if for all $\sigma^A \in S^A, \tau^A \in T^A$,
 $(\sigma^B, \tau^B) = f((\sigma^A, \tau^A))$ has the following properties:
Property 1

• For every state σ^A in scheme A such that $\sigma^A \xrightarrow{\tau}^* \sigma^A$, there is a state σ^B in scheme B such that $\sigma^B \xrightarrow{\tau}^* \sigma^B$, and σ^A and σ^B are equivalent under the mapping f.

 • That is, for every reachable state in A, a matching state in B gives the same answer for every query.
Property 2

• For every state σ'^B in scheme B such that $\sigma^B \xrightarrow{\tau}^* \sigma'^B$, there is a state σ'^A in scheme A such that $\sigma^A \xrightarrow{\tau}^* \sigma'^A$, and σ'^A and σ'^B are equivalent under the mapping f

 • That is, for every reachable state in B, a matching state in A gives the same answer for every query
Theorem

Mapping f from scheme A to B is strongly security-preserving iff f is a state-matching reduction
Proof (\iff)

- Must show $(\sigma^A, \phi^A, \tau^A, \Pi)$ true iff $(\sigma^B, \phi^B, \tau^B, \Pi)$ true
- Π is \exists: assume τ^A-reachable state σ'^A from σ^A in which ϕ^A true
 - By property 1, there is a state σ'^B corresponding to σ'^A in which ϕ^B holds
- Π is \forall: assume τ^A-reachable state σ'^A from σ^A in which ϕ^A false
 - By property 1, there is a state σ'^B corresponding to σ'^A in which ϕ^B false
- Same for ϕ^B with τ^B-reachable state σ'^B from σ^B
- So $(\sigma^A, \phi^A, \tau^A, \Pi)$ true iff $(\sigma^B, \phi^B, \tau^B, \Pi)$ true
Proof (\iff)

- Let f be map from A to B but not state-matching reduction. Then there are $\sigma^A \in S^A$, $\tau^A \in T^A$, $(\sigma^B, \tau^B) = f((\sigma^A, \tau^A))$ violating at least one of the properties.

- Assume it’s property 1; σ^A, σ^B corresponding states. There is a τ^A-reachable state σ'^A from σ^A such that no τ^B-reachable state from σ^B is equivalent to σ'^B.

- Generate φ^A and φ^B such that the existential compositional security analysis in A is true but in B is false.
 - To do this, look at each $q^A \in Q^A$.
 - If $e(\sigma'^A, q^A) = \text{true}$, conjoin q^A to φ^A; otherwise, conjoin $\neg q^A$ to φ^A.
 - Then $e(\sigma'^A, q^A) = \text{true}$ but for $\varphi^B = f(\varphi^A)$ and all states σ'^B that are τ^B-reachable from σ^B, $e(\sigma'^B, q^B) = \text{false}$.

- Thus, f is not strongly security-preserving.

- Argument for property 2 is similar.
Expressive Power

If access control model MA has a scheme that cannot be mapped into a scheme in access control model MB using a state-matching reduction, then model MB is less expressive than model MA.

If every scheme in model MA can be mapped into a scheme in model MB using a state-matching reduction, then model MB is as expressive as model MA.

If MA is as expressive as MB, and MB is as expressive as MA, the models are equivalent

• Note this does not assume monotonicity, unlike earlier definition
Augmented Typed Access Control Matrix

• Add a test for the absence of rights to TAM

command add\cdot right(s:u, o:v)

 if own in a[s,o] and r not in a[s,o]
 then
 enter r into a[s,o]
 end

• How does this affect the answer to the safety question?
Safety Question

• ATAM can be mapped onto TAM
• But will the mapping, or any such mapping, preserve security properties?
• Approach: consider TAM as an access control model
TAM as Access Control Model

• S set of subjects; S_σ subjects in state σ
• O set of objects; O_σ objects in state σ
• R set of rights; R_σ rights in state σ
• T set of types; T_σ subjects in state σ
• $t : S_\sigma \cup O_\sigma \rightarrow T_\sigma$ gives type of any subject or object
• State σ defined as $(S_\sigma, O_\sigma, R_\sigma, T_\sigma, t)$
• In TAM, query is of form “is $r \in a[s,o]$”, and $e(s, r \in a[s,o])$ true iff $s \in S_\sigma, o \in O_\sigma, r \in R_\sigma, r \in a_\sigma[s,o]$ are true
ATAM as Access Control Model

Same as TAM with one addition:

• ATAM also allows queries of form “is $r \notin a[s,o]$”, and $e(s, r \notin a[s,o])$
 true iff $s \in S_\sigma$, $o \in O_\sigma$, $r \in R_\sigma$, $r \notin a_\sigma[s,o]$ are true
Theorem

A state-matching reduction from ATAM to Tam does not exist.

Outline of proof: by contradiction

• Consider two state transitions, one that creates subject and one that adds right r to an element of the matrix
• Can determine an upper bound on the number of answers to TAM query a command can change; depends on state and commands
Proof

• Assume f is state-matching reduction from ATAM to TAM

• Consider simple ATAM scheme:
 • Initial state σ_0 has no subjects, objects
 • All entities have type t
 • Only one right r
 • Query $q_{ij} = r \in a[s,o]$; query $q_{ij} = r \notin a[s,o]$
 • 2 state transition rules
 • $make\cdot subj(s : t)$ creates subject s of type t
 • $add\cdot right(x : t, y : t)$ adds right r to $a[x, y]$
Proof

• TAM: superscript T represents components of that system
 • So initial state is $\sigma_0^T = f(\sigma_0)$, transitions are $\tau^T = f(\tau)$
• By definition of state-matching reduction, how f maps queries does not depend on initial state or state transitions of a model
• Let p, q be queries in ATAM and p^T, q^T the corresponding queries in TAM; if $p \neq q$, then $p^T \neq q^T$
• As commands in TAM execute, they can change the value (response) of q_{ij}
• Upper bound on the number of values of queries a single command can change is m (number of enter or add•right operations)
Proof

• Choose $n > m$

• In ATAM, construct state σ_k such that:
 • $\sigma_0 \rightarrow^{*} \sigma_k$; and
 • $e(\sigma_k, \neg q_{1,1} \land q_{1,1} \land \ldots \land \neg q_{n,n} \land q_{n,n})$ is true

• So $e(\sigma_k, q_{i,j})$ is false, $e(\sigma_k, q_{i,j})$ is true for all $1 \leq i, j \leq n$

• As f is a state-matching reduction, there is a state σ_k^T in TAM that causes the corresponding queries to be answered the same way

• Consider $\sigma_0^T \rightarrow \sigma_1^T \rightarrow \ldots \rightarrow \sigma_k^T$; choose first state σ_C^T such that $e(\sigma_C^T, q_{i,j}^T \lor q_{i,j}^T)$ is true for all $1 \leq i, j \leq n$
Proof

• In σ_{C-1}^T, $e(\sigma_{C-1}^T, q_{v,w}^T \lor \overline{q_{v,w}^T})$ is false for some $1 \leq v, w \leq n$, so
 $e(\sigma_{C-1}^T, \overline{q_{v,w}^T} \land \overline{q_{v,w}^T})$ is true

• State σ in ATAM for which $e(\sigma, \overline{q_{v,w}} \land \overline{q_{v,w}})$ is true is one in which either s_v or s_w or both does not exist

• Thus in that state, one of the following 2 queries holds:
 • $Q_1 = \overline{q_{v,1}} \land \overline{q_{v,1}} \land \ldots \land \overline{q_{n,v}} \land \overline{q_{n,v}}$
 • $Q_1 = \overline{q_{w,1}} \land \overline{q_{w,1}} \land \ldots \land \overline{q_{n,w}} \land \overline{q_{n,w}}$

• So in TAM, $e(\sigma_{C-1}^T, Q_1^T \land Q_2^T)$ is true
Proof

• Now consider the transition from σ_{c-1}^T to σ_c^T
• Values of at least n queries in Q_1 or Q_2 must change from false to true
• But each command can change at most $m < n$ queries
• This is a contradiction
• So no such f can exist, proving the result

Thus, ATAM can express security properties that TAM cannot
Key Points

• Safety problem undecidable
• Limiting scope of systems can make problem decidable
• Types critical to safety problem’s analysis