Safety Question

• In this model:
 Is it possible to have a derivable state with $X/r:c$ in $\text{dom}(A)$, or does there exist a subject B with ticket X/rc in the initial state or which can demand X/rc and $\tau(X)/r:c$ in $\text{flow}^*(B,A)$?

• To answer: construct maximal state and test
 • Consider acyclic attenuating schemes; how do we construct maximal state?
Intuition

• Consider state h.

• State u corresponds to h but with minimal number of new entities created such that maximal state m can be derived with no create operations
 • So if in history from h to m, subject X creates two entities of type a, in u only one would be created; surrogate for both

• m can be derived from u in polynomial time, so if u can be created by adding a finite number of subjects to h, safety question decidable.
Fully Unfolded State

• State u derived from state 0 as follows:
 • delete all loops in cc; new relation cc'
 • mark all subjects as folded
 • while any $X \in SUB^0$ is folded
 • mark it unfolded
 • if X can create entity Y of type y, it does so (call this the y-surrogate of X); if entity $Y \in SUB^g$, mark it folded
 • if any subject in state h can create an entity of its own type, do so

• Now in state u
Termination

• First loop terminates as SUB^0 finite

• Second loop terminates:
 • Each subject in SUB^0 can create at most $|TS|$ children, and $|TS|$ is finite
 • Each folded subject in $|SUB^i|$ can create at most $|TS| - i$ children
 • When $i = |TS|$, subject cannot create more children; thus, folded is finite
 • Each loop removes one element

• Third loop terminates as SUB^h is finite
Surrogate

• Intuition: surrogate collapses multiple subjects of same type into single subject that acts for all of them

• Definition: given initial state 0, for every derivable state h define surrogate function $\sigma: \text{ENT}^h \rightarrow \text{ENT}^h$ by:
 • if X in ENT^0, then $\sigma(X) = X$
 • if Y creates X and $\tau(Y) = \tau(X)$, then $\sigma(X) = \sigma(Y)$
 • if Y creates X and $\tau(Y) \neq \tau(X)$, then $\sigma(X) = \tau(Y)$-surrogate of $\sigma(Y)$
Implications

• $\tau(\sigma(X)) = \tau(X)$
• If $\tau(X) = \tau(Y)$, then $\sigma(X) = \sigma(Y)$
• If $\tau(X) \neq \tau(Y)$, then
 • $\sigma(X)$ creates $\sigma(Y)$ in the construction of u
 • $\sigma(X)$ creates entities X' of type $\tau(X') = \tau(\sigma(X))$
• From these, for a system with an acyclic attenuating scheme, if X creates Y, then tickets that would be introduced by pretending that $\sigma(X)$ creates $\sigma(Y)$ are in $dom^u(\sigma(X))$ and $dom^u(\sigma(Y))$
Deriving Maximal State

• Idea
 • Reorder operations so that all creates come first and replace history with equivalent one using surrogates
 • Show maximal state of new history is also that of original history
 • Show maximal state can be derived from initial state
Reordering

• H legal history deriving state h from state 0
• Order operations: first create, then demand, then copy operations
• Build new history G from H as follows:
 • Delete all creates
 • “X demands $Y/r:c$” becomes “$\sigma(X)$ demands $\sigma(Y)/r:c$”
 • “Y copies $X/r:c$ from Y” becomes “$\sigma(Y)$ copies $\sigma(X)/r:c$ from $\sigma(Y)$”
Tickets in Parallel

• Lemma
 • All transitions in G legal; if $X/r:c \in \text{dom}^h(Y)$, then $\sigma(X)/r:c \in \text{dom}^h(\sigma(Y))$

• Outline of proof: induct on number of copy operations in H
Basis

• \(H \) has create, demand only; so \(G \) has demand only. \(s \) preserves type, so by construction every demand operation in \(G \) legal.

• 3 ways for \(\mathbf{X}/r:c \) to be in \(\text{dom}^h(\mathbf{Y}) \):
 • \(\mathbf{X}/r:c \in \text{dom}^0(\mathbf{Y}) \) means \(\mathbf{X}, \mathbf{Y} \in \text{ENT}^0 \), so trivially \(\sigma(\mathbf{X})/r:c \in \text{dom}^g(\sigma(\mathbf{Y})) \) holds
 • A create added \(\mathbf{X}/r:c \in \text{dom}^h(\mathbf{Y}) \): previous lemma says \(\sigma(\mathbf{X})/r:c \in \text{dom}^g(\sigma(\mathbf{Y})) \) holds
 • A demand added \(\mathbf{X}/r:c \in \text{dom}^h(\mathbf{Y}) \): corresponding demand operation in \(G \) gives \(\sigma(\mathbf{X})/r:c \in \text{dom}^g(\sigma(\mathbf{Y})) \)
Hypothesis

• Claim holds for all histories with k copy operations
• History H has $k+1$ copy operations
 • H' initial sequence of H composed of k copy operations
 • h' state derived from H'
Step

• G’ sequence of modified operations corresponding to H'; g' derived state
 • G’ legal history by hypothesis
• Final operation is “Z copied X/r:c from Y”
 • So h, h' differ by at most $X/r:c \in dom^h(Z)$
 • Construction of G means final operation is $\sigma(X)/r:c \in dom^g(\sigma(Y))$
• Proves second part of claim
Step

• H’legal, so for H to be legal, we have:
 1. $X/rc \in dom^h(Y)$
 2. $link_i^h(Y, Z)$
 3. $\tau(X/r:c) \in f_i(\tau(Y), \tau(Z))$

• By IH, 1, 2, as $X/r:c \in dom^h(Y)$,
 $\sigma(X)/r:c \in dom^g(\sigma(Y))$ and $link_i^g(\sigma(Y), \sigma(Z))$

• As σ preserves type, IH and 3 imply
 $\tau(\sigma(X)/r:c) \in f_i(\tau((\sigma(Y)), \tau(\sigma(Z)))$

• IH says G’legal, so G is legal
Corollary

• If $\text{link}_i^h(X, Y)$, then $\text{link}_i^g(\sigma(X), \sigma(Y))$
Main Theorem

• System has acyclic attenuating scheme

• For every history H deriving state h from initial state, there is a history G without create operations that derives g from the fully unfolded state u such that

\[(\forall X, Y \in SUB^h)[\text{flow}^h(X, Y) \subseteq \text{flow}^g(\sigma(X), \sigma(Y))]\]

• Meaning: any history derived from an initial state can be simulated by corresponding history applied to the fully unfolded state derived from the initial state
Proof

• Outline of proof: show that every $path^h(X,Y)$ has corresponding $path^g(\sigma(X), \sigma(Y))$ such that $cap(path^h(X,Y)) = cap(path^g(\sigma(X), \sigma(Y)))$
 • Then corresponding sets of tickets flow through systems derived from H and G
 • As initial states correspond, so do those systems

• Proof by induction on number of links
Basis and Hypothesis

• Length of $path^h(X, Y) = 1$. By definition of $path^h$, $link^h_i(X, Y)$, hence $link^g_i(\sigma(X), \sigma(Y))$. As σ preserves type, this means

$$cap(path^h(X, Y)) = cap(path^g(\sigma(X), \sigma(Y)))$$

• Now assume this is true when $path^h(X, Y)$ has length k
Step

- Let $\text{path}^h(X, Y)$ have length $k+1$. Then there is a Z such that $\text{path}^h(X, Z)$ has length k and $\text{link}_j^h(Z, Y)$.
- By IH, there is a $\text{path}^g(\sigma(X), \sigma(Z))$ with same capacity as $\text{path}^h(X, Z)$.
- By corollary, $\text{link}_j^g(\sigma(Z), \sigma(Y))$.
- As σ preserves type, there is $\text{path}^g(\sigma(X), \sigma(Y))$ with

$$\text{cap}(\text{path}^h(X, Y)) = \text{cap}(\text{path}^g(\sigma(X), \sigma(Y)))$$
Implication

• Let maximal state corresponding to v be $\#u$
 • Deriving history has no creates
 • By theorem,

$$\left(\forall X, Y \in \text{SUB}^h \right)[\text{flow}^h(X, Y) \subseteq \text{flow}^\#u(\sigma(X), \sigma(Y))]$$

 • If $X \in \text{SUB}^0$, $\sigma(X) = X$, so:

$$\left(\forall X, Y \in \text{SUB}^0 \right)[\text{flow}^h(X, Y) \subseteq \text{flow}^\#u(X, Y)]$$

• So $\#u$ is maximal state for system with acyclic attenuating scheme
 • $\#u$ derivable from u in time polynomial to $|\text{SUB}^u|$ • Worst case computation for $\text{flow}^\#u$ is exponential in $|TS|$
Safety Result

• If the scheme is acyclic and attenuating, the safety question is decidable
Expressive Power

• How do the sets of systems that models can describe compare?
 • If HRU equivalent to SPM, SPM provides more specific answer to safety question
 • If HRU describes more systems, SPM applies only to the systems it can describe
HRU vs. SPM

• SPM more abstract
 • Analyses focus on limits of model, not details of representation

• HRU allows revocation
 • SMP has no equivalent to delete, destroy

• HRU allows multiparent creates
 • SMP cannot express multiparent creates easily, and not at all if the parents are of different types because can\(\text{\textbullet\text{create}}\) allows for only one type of creator
Multiparent Create

• Solves mutual suspicion problem
 • Create proxy jointly, each gives it needed rights

• In HRU:

 command multicreate(s₀, s₁, o)
 if r in a[s₀, s₁] and r in a[s₁, s₀]
 then
 create object o;
 enter r into a[s₀, o];
 enter r into a[s₁, o];
 end
SPM and Multiparent Create

• *cc* extended in obvious way
 • *cc* \(\subseteq TS \times \ldots \times TS \times T\)

• Symbols
 • \(X_1, \ldots, X_n\) parents, \(Y\) created
 • \(R_{1,i}, R_{2,i}, R_{3}, R_{4,i} \subseteq R\)

• Rules
 • \(cr_p,i(\tau(X_1), \ldots, \tau(X_n)) = Y/R_{1,1} \cup X_i/R_{2,i}\)
 • \(cr_C(\tau(X_1), \ldots, \tau(X_n)) = Y/R_{3} \cup X_1/R_{4,1} \cup \ldots \cup X_n/R_{4,n}\)
Example

• Anna, Bill must do something cooperatively
 • But they don’t trust each other

• Jointly create a proxy
 • Each gives proxy only necessary rights

• In ESPM:
 • Anna, Bill type a; proxy type p; right $x \in R$
 • $cc(a, a) = p$
 • $cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 • $cr_{proxy}(a, a, p) = \{ Anna/x, Bill//x \}$
2-Parent Joint Create Suffices

• Goal: emulate 3-parent joint create with 2-parent joint create

• Definition of 3-parent joint create (subjects P_1, P_2, P_3; child C):
 - $cc(\tau(P_1), \tau(P_2), \tau(P_3)) = Z \subseteq T$
 - $cr_{P_1}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{1,1} \cup P_1/R_{2,1}$
 - $cr_{P_2}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{2,1} \cup P_2/R_{2,2}$
 - $cr_{P_3}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{3,1} \cup P_3/R_{2,3}$
General Approach

• Define agents for parents and child
 • Agents act as surrogates for parents
 • If create fails, parents have no extra rights
 • If create succeeds, parents, child have exactly same rights as in 3-parent creates
 • Only extra rights are to agents (which are never used again, and so these rights are irrelevant)
Entities and Types

• Parents P_1, P_2, P_3 have types p_1, p_2, p_3
• Child C of type c
• Parent agents A_1, A_2, A_3 of types a_1, a_2, a_3
• Child agent S of type s
• Type t is parentage
 • if $X/t \in \text{dom}(Y)$, X is Y’s parent
• Types t, a_1, a_2, a_3, s are new types
can\textbullet create

- Following added to \textit{can\textbullet create}:
 - \textit{cc}(p_1) = a_1
 - \textit{cc}(p_2, a_1) = a_2
 - \textit{cc}(p_3, a_2) = a_3
 - Parents creating their agents; note agents have maximum of 2 parents
 - \textit{cc}(a_3) = s
 - Agent of all parents creates agent of child
 - \textit{cc}(s) = c
 - Agent of child creates child
Creation Rules

• Following added to create rule:
 • $cr_p(p_1, a_1) = \emptyset$
 • $cr_C(p_1, a_1) = p_1/Rtc$
 • Agent’s parent set to creating parent; agent has all rights over parent
 • $cr_{Pfirst}(p_2, a_1, a_2) = \emptyset$
 • $cr_{Psecond}(p_2, a_1, a_2) = \emptyset$
 • $cr_C(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc$
 • Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
Creation Rules

- \(cr_{P\text{first}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_{P\text{second}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_C(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc \)
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- \(cr_p(a_3, s) = \emptyset \)
- \(cr_C(a_3, s) = a_3/tc \)
 - Child’s agent has third agent as parent \(cr_p(a_3, s) = \emptyset \)
- \(cr_p(s, c) = C/Rtc \)
- \(cr_C(s, c) = c/R_3t \)
 - Child’s agent gets full rights over child; child gets \(R_3 \) rights over agent
Link Predicates

• Idea: no tickets to parents until child created
 • Done by requiring each agent to have its own parent rights
 • \text{link}_1(A_2, A_1) = A_1/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2)
 • \text{link}_1(A_3, A_2) = A_2/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3)
 • \text{link}_2(S, A_3) = A_3/t \in \text{dom}(S) \land C/t \in \text{dom}(C)
 • \text{link}_3(A_1, C) = C/t \in \text{dom}(A_1)
 • \text{link}_3(A_2, C) = C/t \in \text{dom}(A_2)
 • \text{link}_3(A_3, C) = C/t \in \text{dom}(A_3)
 • \text{link}_4(A_1, P_1) = P_1/t \in \text{dom}(A_1) \land A_1/t \in \text{dom}(A_1)
 • \text{link}_4(A_2, P_2) = P_2/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2)
 • \text{link}_4(A_3, P_3) = P_3/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3)
Filter Functions

\[
\begin{align*}
 f_1(a_2, a_1) &= a_1 / t \cup c / Rtc \\
 f_1(a_3, a_2) &= a_2 / t \cup c / Rtc \\
 f_2(s, a_3) &= a_3 / t \cup c / Rtc \\
 f_3(a_1, c) &= p_1 / R_{4,1} \\
 f_3(a_2, c) &= p_2 / R_{4,2} \\
 f_3(a_3, c) &= p_3 / R_{4,3} \\
 f_4(a_1, p_1) &= c / R_{1,1} \cup p_1 / R_{2,1} \\
 f_4(a_2, p_2) &= c / R_{1,2} \cup p_2 / R_{2,2} \\
 f_4(a_3, p_3) &= c / R_{1,3} \cup p_3 / R_{2,3}
\end{align*}
\]
Construction

Create A_1, A_2, A_3, S, C; then

- P_1 has no relevant tickets
- P_2 has no relevant tickets
- P_3 has no relevant tickets
- A_1 has P_1/Rtc
- A_2 has $P_2/Rtc \cup A_1/tc$
- A_3 has $P_3/Rtc \cup A_2/tc$
- S has $A_3/tc \cup C/Rtc$
- C has C/R_{3t}
Construction

• Only $link_2(S, A_3)$ true \Rightarrow apply f_2
 • A_3 has $P_3/Rtc \cup A_2/t \cup A_3/t \cup C/Rtc$

• Now $link_1(A_3, A_2)$ true \Rightarrow apply f_1
 • A_2 has $P_2/Rtc \cup A_1/tc \cup A_2/t \cup C/Rtc$

• Now $link_1(A_2, A_1)$ true \Rightarrow apply f_1
 • A_1 has $P_2/Rtc \cup A_1/tc \cup C/Rtc$

• Now all $link_3$s true \Rightarrow apply f_3
 • C has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$
Finish Construction

• Now $link_4$ is true \Rightarrow apply f_4
 • P_1 has $C/R_{1,1} \cup P_1/R_{2,1}$
 • P_2 has $C/R_{1,2} \cup P_2/R_{2,2}$
 • P_3 has $C/R_{1,3} \cup P_3/R_{2,3}$
• 3-parent joint create gives same rights to P_1, P_2, P_3, C
• If create of C fails, $link_2$ fails, so construction fails
Theorem

• The two-parent joint creation operation can implement an \(n \)-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.

• **Proof**: by construction, as above
 • Difference is that the two systems need not start at the same initial state
Theorems

• Monotonic ESPM and the monotonic HRU model are equivalent.
• Safety question in ESPM also decidable if acyclic attenuating scheme
 • Proof similar to that for SPM
Expressiveness

• Graph-based representation to compare models

• Graph
 • Vertex: represents entity, has static type
 • Edge: represents right, has static type

• Graph rewriting rules:
 • Initial state operations create graph in a particular state
 • Node creation operations add nodes, incoming edges
 • Edge adding operations add new edges between existing vertices
Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes P_1, P_2, P_3 parents
 - Create node C with type c with edges of type e
 - Add node A_1 of type a and edge from P_1 to A_1 of type e'
Next Step

• A_1, P_2 create A_2; A_2, P_3 create A_3
• Type of nodes, edges are a and e'
Next Step

• A_3 creates S, of type a
• S creates C, of type c
Last Step

- **Edge adding operations:**
 - $P_1 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_1 to C edge type e
 - $P_2 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_2 to C edge type e
 - $P_3 \rightarrow A_3 \rightarrow S \rightarrow C$: P_3 to C edge type e
Definitions

• *Scheme*: graph representation as above
• *Model*: set of schemes
• Schemes A, B correspond if graph for both is identical when all nodes with types not in A and edges with types in A are deleted
Example

• Above 2-parent joint creation simulation in scheme \textit{TWO}

• Equivalent to 3-parent joint creation scheme \textit{THREE} in which \(P_1, P_2, P_3, C\) are of same type as in \textit{TWO}, and edges from \(P_1, P_2, P_3\) to \(C\) are of type \(e\), and no types \(a\) and \(e'\) exist in \textit{TWO}
Simulation

Scheme A simulates scheme B iff

• every state B can reach has a corresponding state in A that A can reach; and

• every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach

 • The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of $THREE$
Expressive Power

• If there is a scheme in MA that no scheme in MB can simulate, MB less expressive than MA
• If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA
• If MA as expressive as MB and vice versa, MA and MB equivalent
Example

• Scheme A in model M
 • Nodes X_1, X_2, X_3
 • 2-parent joint create
 • 1 node type, 1 edge type
 • No edge adding operations
 • Initial state: X_1, X_2, X_3, no edges

• Scheme B in model N
 • All same as A except no 2-parent joint create
 • 1-parent create

• Which is more expressive?
Can A Simulate B?

- Scheme A simulates 1-parent create: have both parents be same node
 - Model M as expressive as model N
Can B Simulate A?

• Suppose X_1, X_2 jointly create Y in A
 • Edges from X_1, X_2 to Y, no edge from X_3 to Y
• Can B simulate this?
 • Without loss of generality, X_1 creates Y
 • Must have edge adding operation to add edge from X_2 to Y
 • One type of node, one type of edge, so operation can add edge between any 2 nodes
No

• All nodes in A have even number of incoming edges
 • 2-parent create adds 2 incoming edges

• Edge adding operation in B that can edge from X_2 to C can add one from X_3 to C
 • A cannot enter this state
 • B cannot transition to a state in which Y has even number of incoming edges
 • No remove rule

• So B cannot simulate A; N less expressive than M
Theorem

• Monotonic single-parent models are less expressive than monotonic multiparent models

• Proof by contradiction
 • Scheme A is multiparent model
 • Scheme B is single parent create
 • Claim: B can simulate A, without assumption that they start in the same initial state
 • Note: example assumed same initial state
Outline of Proof

• X_1, X_2 nodes in A
 • They create Y_1, Y_2, Y_3 using multiparent create rule
 • Y_1, Y_2 create Z, again using multiparent create rule
 • Note: no edge from Y_3 to Z can be added, as A has no edge-adding operation
Outline of Proof

- \(\mathbf{W}, \mathbf{X}_1, \mathbf{X}_2 \) nodes in \(B \)
 - \(\mathbf{W} \) creates \(\mathbf{Y}_1, \mathbf{Y}_2, \mathbf{Y}_3 \) using single parent create rule, and adds edges for \(\mathbf{X}_1, \mathbf{X}_2 \) to all using edge adding rule
 - \(\mathbf{Y}_1 \) creates \(\mathbf{Z} \), again using single parent create rule; now must add edge from \(\mathbf{Y}_2 \) to \(\mathbf{Z} \) to simulate \(A \)
 - Use same edge adding rule to add edge from \(\mathbf{Y}_3 \) to \(\mathbf{Z} \): cannot duplicate this in scheme \(A \)!
Meaning

• Scheme B cannot simulate scheme A, contradicting hypothesis
• ESPM more expressive than SPM
 • ESPM multiparent and monotonic
 • SPM monotonic but single parent
Typed Access Matrix Model

• Like ACM, but with set of types T
 • All subjects, objects have types
 • Set of types for subjects TS

• Protection state is (S, O, τ, A)
 • $\tau: O \rightarrow T$ specifies type of each object
 • If X subject, $\tau(X)$ in TS
 • If X object, $\tau(X)$ in $T - TS$
Create Rules

• Subject creation
 • *create subject* \(s \) *of type* \(ts \)
 • \(s \) must not exist as subject or object when operation executed
 • \(ts \in TS \)

• Object creation
 • *create object* \(o \) *of type* \(to \)
 • \(o \) must not exist as subject or object when operation executed
 • \(to \in T – TS \)
Create Subject

• Precondition: \(s \notin S \)

• Primitive command: \textbf{create subject} \(s \) \textbf{of type} \(t \)

• Postconditions:
 • \(S' = S \cup \{ s \}, \ O' = O \cup \{ s \} \)
 • \((\forall y \in O)[\tau'(y) = \tau(y)], \ \tau'(s) = t\)
 • \((\forall y \in O')[\alpha'[s, y] = \emptyset], \ (\forall x \in S')[\alpha'[x, s] = \emptyset]\)
 • \((\forall x \in S)(\forall y \in O)[\alpha'[x, y] = a[x, y]]\)
Create Object

• Precondition: \(o \not\in O \)

• Primitive command: \texttt{create object} \(o \) \texttt{of type} \(t \)

• Postconditions:
 • \(S' = S, O' = O \cup \{ o \} \)
 • \((\forall y \in O)[\tau'(y) = \tau(y)], \tau'(o) = t\)
 • \((\forall x \in S')[a'[x, o] = \emptyset]\)
 • \((\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]\)
Definitions

• MTAM Model: TAM model without **delete, destroy**
 • MTAM is Monotonic TAM

• $\alpha(x_1:t_1, \ldots, x_n:t_n)$ create command
 • t_i child type in α if any of **create subject x_i of type t_i** or **create object x_i of type t_i** occur in α
 • t_i parent type otherwise
Cyclic Creates

\textbf{command} \textit{cry} ⋅ \textit{havoc}(s_1 : u, s_2 : u, o_1 : v, o_2 : v, o_3 : w, o_4 : w)

create subject \(s_1 \) of type \(u \);
create object \(o_1 \) of type \(v \);
create object \(o_3 \) of type \(w \);
enter \(r \) into \(a[s_2, s_1] \);
enter \(r \) into \(a[s_2, o_2] \);
enter \(r \) into \(a[s_2, o_4] \)

end
Creation Graph

- u, v, w child types
- u, v, w also parent types
- Graph: lines from parent types to child types
- This one has cycles
Acyclic Creates

\[\text{command } \text{cry} \cdot \text{havoc}(s_1: u, s_2: u, o_1: v, o_3: w)\]
\begin{align*}
\quad & \text{create object } o_1 \text{ of type } v; \\
\quad & \text{create object } o_3 \text{ of type } w; \\
\quad & \text{enter } r \text{ into } a[s_2, s_1]; \\
\quad & \text{enter } r \text{ into } a[s_2, o_1]; \\
\quad & \text{enter } r \text{ into } a[s_2, o_3]
\end{align*}
\text{end}
Creation Graph

- v, w child types
- u parent type
- Graph: lines from parent types to child types
- This one has no cycles
Theorems

• Safety decidable for systems with acyclic MTAM schemes
 • In fact, it’s \textit{NP-hard}

• Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 • “Ternary” means commands have no more than 3 parameters
 • Equivalent in expressive power to MTAM
Security Properties

• Question: given two models, do they have the same security properties?
 • First comes theory
 • Then comes an example comparison

• Basic idea: view access request as query asking if subject has right to perform action on object
Alternate Definition of “Scheme”

• Σ set of states
• Q set of queries
• $e: \Sigma \times Q \rightarrow \{\text{true}, \text{false}\}$
 • Called entailment relation
• T set of state transition rules
• (Σ, Q, e, T) is an access control scheme
Alternate Definition of “Scheme”

• s tries to access o

 • Corresponds to query $q \in Q$

• If state $\sigma \in \Sigma$ allows access, then $e(\sigma, q) = true$; otherwise, $e(\sigma, q) = false$

• Write change of state from σ_0 to σ_1 as $\sigma_0 \mapsto \sigma_1$

 • Emphasizing we’re looking at permissions

 • Multiple transitions are $\sigma_0 \mapsto^* \sigma_n$

 • Σ_n said to be τ-reachable from σ_0
Example: Take-Grant

• Σ set of all possible protection graphs

• Q set of queries

 \\{ can\textbullet share(\alpha, v_1, v_2, G_0) \mid \alpha \in R, v_1, v_2 \in G_0 \}\n
• $e(\sigma_0, q) = true$ if q holds; $e(\sigma_0, q) = false$ if not

• T set of sequences of take, grant, create, remove rules
Security Analysis Instance

• Let \((\Sigma, Q, e, T)\) be an access control scheme

• Tuple \((\sigma, q, \tau, \Pi)\) is security analysis instance, where:
 • \(\sigma \in \Sigma\) — \(\tau \in T\)
 • \(q \in Q\) — \(\Pi \) is \(\forall\) or \(\exists\)

• If \(\Pi\) is \(\exists\), existential security analysis
 • Is there a state \(\sigma'\) such that \(\sigma \mapsto^{*} \sigma', e(\sigma', q) = true\)?

• If \(\Pi\) is \(\forall\), universal security analysis
 • For all states \(\sigma'\) such that \(\sigma \mapsto^{*} \sigma'\), is \(e(\sigma', q) = true\)?
Example: Take-Grant

• $\sigma_0 = G_0$
• q is can\(\cdot\)share(r, v_1, v_2, G_0)
• τ is sequence of take-grant rules
• Π is \exists
• Security analysis instance examines whether v_1 has r rights over v_2 in graph with initial state G_0
• So safety question is security analysis instance