ECS 235B, Lecture 5

January 16, 2019
Security Properties

• Question: given two models, do they have the same security properties?
 • First comes theory
 • Then comes an example comparison

• Basic idea: view access request as query asking if subject has right to perform action on object
Alternate Definition of “Scheme”

• Σ set of states
• Q set of queries
• $e: \Sigma \times Q \rightarrow \{true, false\}$
 • Called entailment relation
• T set of state transition rules
• (Σ, Q, e, T) is an access control scheme
Alternate Definition of “Scheme”

• s tries to access o
 • Corresponds to query $q \in Q$

• If state $\sigma \in \Sigma$ allows access, then $e(\sigma, q) = true$; otherwise, $e(\sigma, q) = false$

• Write change of state from σ_0 to σ_1 as $\sigma_0 \mapsto \sigma_1$
 • Emphasizing we’re looking at permissions
 • Multiple transitions are $\sigma_0 \mapsto^* \tau \sigma_n$
 • Σ_n said to be τ-reachable from σ_0
Example: Take-Grant

• \(\Sigma \) set of all possible protection graphs
• \(Q \) set of queries
 \[\{ \text{can} \cdot \text{share}(\alpha, \mathbf{v}_1, \mathbf{v}_2, G_0) \mid \alpha \in R, \mathbf{v}_1, \mathbf{v}_2 \in G_0 \} \]
• \(e(\sigma_0, q) = \text{true} \) if \(q \) holds; \(e(\sigma_0, q) = \text{false} \) if not
• \(T \) set of sequences of take, grant, create, remove rules
Security Analysis Instance

• Let \((\Sigma, Q, e, T)\) be an access control scheme

• Tuple \((\sigma, q, \tau, \Pi)\) is security analysis instance, where:
 • \(\sigma \in \Sigma\)
 • \(q \in Q\)
 • \(\tau \in T\)
 • \(\Pi\) is \(\forall\) or \(\exists\)

• If \(\Pi\) is \(\exists\), existential security analysis
 • Is there a state \(\sigma'\) such that \(\sigma \xrightarrow{\tau^*} \sigma', e(\sigma', q) = true\)?

• If \(\Pi\) is \(\forall\), universal security analysis
 • For all states \(\sigma'\) such that \(\sigma \xrightarrow{\tau^*} \sigma'\), is \(e(\sigma', q) = true\)?
Example: Take-Grant

• $\sigma_0 = G_0$
• q is can•share(r, v_1, v_2, G_0)
• τ is sequence of take-grant rules
• Π is \exists
• Security analysis instance examines whether v_1 has r rights over v_2 in graph with initial state G_0
• So safety question is security analysis instance
Comparing Two Models

• Each query in A corresponds to a query in B
• Each (state, state transition) in A corresponds to (state, state transition) in B

Formally:

• $A = (\Sigma^A, Q^A, e^A, T^A)$ and $B = (\Sigma^B, Q^B, e^B, T^B)$

• *mapping* from A to B is:
 • $f : (\Sigma^A \times T^A) \cup Q^A \rightarrow (\Sigma^B \times T^B) \cup Q^B$
Image of Instance

- f mapping from A to B
- *image of a security analysis instance* $(\sigma^A, q^A, \tau^A, \Pi)$ under f is $(\sigma^B, q^B, \tau^B, \Pi)$, where:
 - $f((\sigma^A, \tau^A)) = (\sigma^B, \tau^B)$
 - $f(q^A) = q^B$
- f is *security-preserving* if every security analysis instance in A is true iff its image is true
Composition of Queries

• Let \((\Sigma, Q, e, T)\) be an access control scheme

• Tuple \((\sigma, \varphi, \tau, \Pi)\) is compositional security analysis instance, where \(\varphi\) is propositional logic formula of queries from \(Q\)

• *image of compositional security analysis instance* defined similarly to previous

• \(f\) is *strongly security-preserving* if every compositional security analysis instance in \(A\) is true iff its image is true
State-Matching Reduction

• $A = (\Sigma^A, Q^A, e^A, T^A)$, $B = (\Sigma^B, Q^B, e^B, T^B)$, f mapping from A to B

• σ^A, σ^B equivalent under the mapping f when
 • $e^A(\sigma^A, q^A) = e^B(\sigma^B, q^B)$

• f state-matching reduction if for all $\sigma^A \in S^A$, $\tau^A \in T^A$, $(\sigma^B, \tau^B) = f((\sigma^A, \tau^A))$ has the following properties:
Property 1

• For every state σ'^A in scheme A such that $\sigma^A \mapsto^\tau \sigma'^A$, there is a state σ'^B in scheme B such that $\sigma^B \mapsto^\tau \sigma'^B$, and σ'^A and σ'^B are equivalent under the mapping f
 • That is, for every reachable state in A, a matching state in B gives the same answer for every query
Property 2

• For every state σ^B in scheme B such that $\sigma^B \mapsto^* \sigma^B$, there is a state σ^A in scheme A such that $\sigma^A \mapsto^* \sigma^A$, and σ^A and σ^B are equivalent under the mapping f
 • That is, for every reachable state in B, a matching state in A gives the same answer for every query
Theorem

Mapping \(f \) from scheme \(A \) to \(B \) is strongly security-preserving iff \(f \) is a state-matching reduction
Proof (\iff)

- Must show $(\sigma^A, \varphi^A, \tau^A, \Pi)$ true iff $(\sigma^B, \varphi^B, \tau^B, \Pi)$ true
- Π is \exists: assume τ^A-reachable state σ'^A from σ^A in which φ^A true
 - By property 1, there is a state σ'^B corresponding to σ'^A in which φ^B holds
- Π is \forall: assume τ^A-reachable state σ'^A from σ^A in which φ^A false
 - By property 1, there is a state σ'^B corresponding to σ'^A in which φ^B false
- Same for φ^B with τ^B-reachable state σ'^B from σ^B
- So $(\sigma^A, \varphi^A, \tau^A, \Pi)$ true iff $(\sigma^B, \varphi^B, \tau^B, \Pi)$ true
Proof (\leftarrow)

- Let f be map from A to B but not state-matching reduction. Then there are $\sigma^A \in S^A$, $\tau^A \in T^A$, $(\sigma^B, \tau^B) = f((\sigma^A, \tau^A))$ violating at least one of the properties.
- Assume it’s property 1; σ^A, σ^B corresponding states. There is a τ^A-reachable state σ'^A from σ^A such that no τ^B-reachable state from σ^B is equivalent to σ'^B.
- Generate φ^A and φ^B such that the existential compositional security analysis in A is true but in B is false.
 - To do this, look at each $q^A \in Q^A$
 - If $e(\sigma'^A, q^A) = true$, conjoin q^A to φ^A; otherwise, conjoin $\neg q^A$ to φ^A
 - Then $e(\sigma'^A, q^A) = true$ but for $\varphi^B = f(\varphi^A)$ and all states σ'^B that are τ^B-reachable from σ^B, $e(\sigma'^B, q^B) = false$
- Thus, f is not strongly security-preserving.
- Argument for property 2 is similar.
Expressive Power

If access control model MA has a scheme that cannot be mapped into a scheme in access control model MB using a state-matching reduction, then model MB is less expressive than model MA.

If every scheme in model MA can be mapped into a scheme in model MB using a state-matching reduction, then model MB is as expressive as model MA.

If MA is as expressive as MB, and MB is as expressive as MA, the models are equivalent

• Note this does not assume monotonicity, unlike earlier definition
Augmented Typed Access Control Matrix

• Add a test for the *absence* of rights to TAM

```latex
\textbf{command} \texttt{add\_right}(s,u, o:v)

\texttt{if own in } a[s,o] \texttt{ and } r \texttt{ not in } a[s,o]

\texttt{then}

\texttt{enter } r \texttt{ into } a[s,o]

\texttt{end}
```

• How does this affect the answer to the safety question?
Safety Question

• ATAM can be mapped onto TAM
• But will the mapping, or any such mapping, preserve security properties?
• Approach: consider TAM as an access control model
TAM as Access Control Model

• S set of subjects; S_σ subjects in state σ
• O set of objects; O_σ objects in state σ
• R set of rights; R_σ rights in state σ
• T set of types; T_σ subjects in state σ
• $t : S_\sigma \cup O_\sigma \rightarrow T_\sigma$ gives type of any subject or object
• State σ defined as $(S_\sigma, O_\sigma, R_\sigma, T_\sigma, t)$
• In TAM, query is of form “is $r \in a[s,o]$”, and $e(s, r \in a[s,o])$ true iff $s \in S_\sigma, o \in O_\sigma, r \in R_\sigma, r \in a_\sigma[s,o]$ are true
ATAM as Access Control Model

Same as TAM with one addition:

- ATAM also allows queries of form “is $r \notin a[s,o]$”, and $e(s, r \notin a[s,o])$ true iff $s \in S_\sigma$, $o \in O_\sigma$, $r \in R_\sigma$, $r \notin a_\sigma[s,o]$ are true
Theorem

A state-matching reduction from ATAM to Tam does not exist.

Outline of proof: by contradiction

• Consider two state transitions, one that creates subject and one that adds right r to an element of the matrix

• Can determine an upper bound on the number of answers to TAM query a command can change; depends on state and commands
Proof

• Assume f is state-matching reduction from ATAM to TAM

• Consider simple ATAM scheme:
 • Initial state σ_0 has no subjects, objects
 • All entities have type t
 • Only one right r
 • Query $q_{ij} = r \in a[s,o]$; query $q_{ij} = r \notin a[s,o]$
 • 2 state transition rules
 • $make\cdot subj(s : t)$ creates subject s of type t
 • $add\cdot right(x : t, y : t)$ adds right r to $a[x, y]$
Proof

• TAM: superscript \(T \) represents components of that system
 • So initial state is \(\sigma_0^T = f(\sigma_0) \), transitions are \(\tau^T = f(\tau) \)
• By definition of state-matching reduction, how \(f \) maps queries does not depend on initial state or state transitions of a model
• Let \(p, q \) be queries in ATAM and \(p^T, q^T \) the corresponding queries in TAM; if \(p \neq q \), then \(p^T \neq q^T \)
• As commands in TAM execute, they can change the value (response) of \(q_{ij} \)
• Upper bound on the number of values of queries a single command can change is \(m \) (number of \text{enter} or \text{add right} operations)
Proof

• Choose \(n > m \)

• In ATAM, construct state \(\sigma_k \) such that:
 • \(\sigma_0 \rightarrow^* \sigma_k \); and
 • \(e(\sigma_k, \neg q_{1,1} \land q_{1,1} \land \ldots \land \neg q_{n,n} \land q_{n,n}) \) is true

• So \(e(\sigma_k, q_{i,j}) \) is false, \(e(\sigma_k, q_{i,j}) \) is true for all \(1 \leq i, j \leq n \)

• As \(f \) is a state-matching reduction, there is a state \(\sigma_k^T \) in TAM that causes the corresponding queries to be answered the same way

• Consider \(\sigma_0^T \rightarrow \sigma_1^T \rightarrow \ldots \rightarrow \sigma_k^T \); choose first state \(\sigma_c^T \) such that \(e(\sigma_c^T, q_{i,j}^T \lor q_{i,j}^T) \) is true for all \(1 \leq i, j \leq n \)
Proof

• In σ_{C-1}^T, $e(\sigma_{C-1}^T, q_{v,w}^T \lor \overline{q_{v,w}^T})$ is false for some $1 \leq v, w \leq n$, so $e(\sigma_{C-1}^T, \neg q_{v,w}^T \land \neg \overline{q_{v,w}^T})$ is true

• State σ in ATAM for which $e(\sigma, \neg q_{v,w} \land \neg \overline{q_{v,w}})$ is true is one in which either s_v or s_w or both does not exist

• Thus in that state, one of the following 2 queries holds:
 • $Q_1 = \neg q_{v,1} \land \neg q_{v,1} \land \ldots \land \neg q_{n,v} \land \neg \overline{q_{n,v}}$
 • $Q_1 = \neg q_{v,1} \land \neg q_{v,1} \land \ldots \land \neg q_{n,w} \land \neg \overline{q_{n,w}}$

• So in TAM, $e(\sigma_{C-1}^T, Q_1^T \land Q_2^T)$ is true
Proof

• Now consider the transition from σ_{C-1}^T to σ_C^T
• Values of at least n queries in Q_1 or Q_2 must change from false to true
• But each command can change at most $m < n$ queries
• This is a contradiction
• So no such f can exist, proving the result

Thus, ATAM can express security properties that TAM cannot
Key Points

• Safety problem undecidable
• Limiting scope of systems can make problem decidable
• Types critical to safety problem’s analysis
Security Policies

• Policies
• Trust
• Nature of Security Mechanisms
• Policy Expression Languages
• Limits on Secure and Precise Mechanisms
Security Policy

• Policy partitions system states into:
 • Authorized (secure)
 • These are states the system can enter
 • Unauthorized (nonsecure)
 • If the system enters any of these states, it’s a security violation

• Secure system
 • Starts in authorized state
 • Never enters unauthorized state
Confidentiality

• X set of entities, I information
• I has the confidentiality property with respect to X if no $x \in X$ can obtain information from I
• I can be disclosed to others
• Example:
 • X set of students
 • I final exam answer key
 • I is confidential with respect to X if students cannot obtain final exam answer key
Integrity

• X set of entities, I information

• I has the *integrity* property with respect to X if all $x \in X$ trust information in I

• Types of integrity:
 • Trust I, its conveyance and protection (data integrity)
 • I information about origin of something or an identity (origin integrity, authentication)
 • I resource: means resource functions as it should (assurance)
Availability

• X set of entities, I resource

• I has the availability property with respect to X if all $x \in X$ can access I

• Types of availability:
 • Traditional: x gets access or not
 • Quality of service: promised a level of access (for example, a specific level of bandwidth); x meets it or not, even though some access is achieved
Policy Models

• Abstract description of a policy or class of policies

• Focus on points of interest in policies
 • Security levels in multilevel security models
 • Separation of duty in Clark-Wilson model
 • Conflict of interest in Chinese Wall model
Mechanisms

• Entity or procedure that enforces some part of the security policy
 • Access controls (like bits to prevent someone from reading a homework file)
 • Disallowing people from bringing CDs and floppy disks into a computer facility to control what is placed on systems
Question

• Policy disallows cheating
 • Includes copying homework, with or without permission
• CS class has students do homework on computer
• Anne forgets to read-protect her homework file
• Bill copies it
• Who breached security?
 • Anne, Bill, or both?
Answer Part 1

• Bill clearly breached security
 • Policy forbids copying homework assignment
 • Bill did it
 • System entered unauthorized state (Bill having a copy of Anne’s assignment)

• If not explicit in computer security policy, certainly implicit
 • Not credible that a unit of the university allows something that the university as a whole forbids, unless the unit explicitly says so
Answer Part #2

• Anne didn’t protect her homework
 • Not required by security policy

• She didn’t breach security

• If policy said students had to read-protect homework files, then Anne did breach security
 • She didn’t do this
Types of Security Policies

• Military (governmental) security policy
 • Policy primarily protecting confidentiality

• Commercial security policy
 • Policy primarily protecting integrity

• Confidentiality policy
 • Policy protecting only confidentiality

• Integrity policy
 • Policy protecting only integrity
Integrity and Transactions

• Begin in consistent state
 • “Consistent” defined by specification

• Perform series of actions (*transaction*)
 • Actions cannot be interrupted
 • If actions complete, system in consistent state
 • If actions do not complete, system reverts to a consistent state