Trust in Formal Methods

1. Proof has no errors
 - Bugs in automated theorem provers

2. Preconditions hold in environment in which S is to be used

3. S transformed into executable $S’$ whose actions follow source code
 - Compiler bugs, linker/loader/library problems

4. Hardware executes $S’$ as intended
 - Hardware bugs (Pentium 1001 bug, for example)
Types of Access Control

• Discretionary Access Control (DAC, IBAC)
 • Individual user sets access control mechanism to allow or deny access to an object

• Mandatory Access Control (MAC)
 • System mechanism controls access to object, and individual cannot alter that access

• Originator Controlled Access Control (ORCON, ORGCON)
 • Originator (creator) of information controls who can access information
Types of Mechanisms

- Secure
- Precise
- Broad

Set of reachable states
Set of secure states
Secure, Precise Mechanisms

• Can one devise a procedure for developing a mechanism that is both secure and precise?
 • Consider confidentiality policies only here
 • Integrity policies produce same result

• Program a function with multiple inputs and one output
 • Let p be a function $p: I_1 \times \ldots \times I_n \to R$. Then p is a program with n inputs $i_k \in I_k$, $1 \leq k \leq n$, and one output $r \to R$
Programs and Postulates

• Observability Postulate: the output of a function encodes all available information about its inputs
 • Covert channels considered part of the output

• Example: authentication function
 • Inputs name, password; output Good or Bad
 • If name invalid, immediately print Bad; else access database
 • Problem: time output of Bad, can determine if name valid
 • This means timing is part of output
Protection Mechanism

• Let \(p \) be a function \(p: I_1 \times \ldots \times I_n \rightarrow R \). A protection mechanism \(m \) is a function

\[
m: I_1 \times \ldots \times I_n \rightarrow R \cup E
\]

for which, when \(i_k \in I_k, \ 1 \leq k \leq n \), either

• \(m(i_1, \ldots, i_n) = p(i_1, \ldots, i_n) \) or

• \(m(i_1, \ldots, i_n) \in E \).

• \(E \) is set of error outputs

• In above example, \(E = \{ \text{“Password Database Missing”}, \text{“Password Database Locked”} \} \)
Confidentiality Policy

• Confidentiality policy for program \(p \) says which inputs can be revealed
 • Formally, for \(p: I_1 \times \ldots \times I_n \rightarrow R \), it is a function \(c: I_1 \times \ldots \times I_n \rightarrow A \), where
 \[A \subseteq I_1 \times \ldots \times I_n \]
 • \(A \) is set of inputs available to observer
 • Security mechanism is function \(m: I_1 \times \ldots \times I_n \rightarrow R \cup E \)
 • \(m \) is secure if and only if \(\exists m': A \rightarrow R \cup E \) such that,
 \[\forall i_k \in I_k, 1 \leq k \leq n, m(i_1, \ldots, i_n) = m'(c(i_1, \ldots, i_n)) \]
 • \(m \) returns values consistent with \(c \)
Examples

• $c(i_1, \ldots, i_n) = C$, a constant
 • Deny observer any information (output does not vary with inputs)

• $c(i_1, \ldots, i_n) = (i_1, \ldots, i_n)$, and $m' = m$
 • Allow observer full access to information

• $c(i_1, \ldots, i_n) = i_1$
 • Allow observer information about first input but no information about other inputs.
Precision

• Security policy may be over-restrictive
 • Precision measures how over-restrictive

• m_1, m_2 distinct protection mechanisms for program p under policy c
 • m_1 as precise as m_2 ($m_1 \approx m_2$) if, for all inputs $i_1, ..., i_n$,
 $$m_2(i_1, ..., i_n) = p(i_1, ..., i_n) \Rightarrow m_1(i_1, ..., i_n) = p(i_1, ..., i_n)$$
 • m_1 more precise than m_2 ($m_1 \sim m_2$) if there is an input $$(i_1', ..., i_n')$$ such that
 $$m_1(i_1', ..., i_n') = p(i_1', ..., i_n')$$ and
 $$m_2(i_1', ..., i_n') \neq p(i_1', ..., i_n').$$
Combining Mechanisms

- \(m_1, m_2 \) protection mechanisms

- \(m_3 = m_1 \cup m_2 \)
 - For inputs on which \(m_1 \) and \(m_2 \) return same value as \(p \), \(m_3 \) does also; otherwise, \(m_3 \) returns same value as \(m_1 \)

- Theorem: if \(m_1, m_2 \) secure, then \(m_3 \) secure
 - Also, \(m_3 \approx m_1 \) and \(m_3 \approx m_2 \)
 - Follows from definitions of secure, precise, and \(m_3 \)
Existence Theorem

• For any program p and security policy c, there exists a precise, secure mechanism m^* such that, for all secure mechanisms m associated with p and c, $m^* \approx m$
 • Maximally precise mechanism
 • Ensures security
 • Minimizes number of denials of legitimate actions
Lack of Effective Procedure

• There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program.

 • Sketch of proof: let policy c be constant function, and p compute function $T(x)$. Assume $T(x) = 0$. Consider program q, where

 $p;$

 $\text{if } z = 0 \text{ then } y := 1 \text{ else } y := 2;$

 halt;
Rest of Sketch

• m associated with q, y value of m, z output of p corresponding to $T(x)$
• $\forall x[T(x) = 0] \rightarrow m(x) = 1$
• $\exists x^\prime [T(x^\prime) \neq 0] \rightarrow m(x) = 2$ or $m(x)$ undefined
• If you can determine m, you can determine whether $T(x) = 0$ for all x
• Determines some information about input (is it 0?)
• Contradicts constancy of c.
• Therefore no such procedure exists
Key Points

• Policies describe *what* is allowed
• Mechanisms control *how* policies are enforced
• Trust underlies everything
Outline

• Overview
 • What is a confidentiality model

• Bell-LaPadula Model
 • General idea
 • Informal description of rules
 • Formal description of rules

• Tranquility

• Declassification

• Controversy
 • †-property
 • System Z
Confidentiality Policy

• Goal: prevent the unauthorized disclosure of information
 • Deals with information flow
 • Integrity incidental

• Multi-level security models are best-known examples
 • Bell-LaPadula Model basis for many, or most, of these
Bell-LaPadula Model, Step 1

• Security levels arranged in linear ordering
 • Top Secret: highest
 • Secret
 • Confidential
 • Unclassified: lowest

• Levels consist are called security clearance $L(s)$ for subjects and security classification $L(o)$ for objects
Example

<table>
<thead>
<tr>
<th>security level</th>
<th>subject</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Secret</td>
<td>Tamara</td>
<td>Personnel Files</td>
</tr>
<tr>
<td>Secret</td>
<td>Samuel</td>
<td>E-Mail Files</td>
</tr>
<tr>
<td>Confidential</td>
<td>Claire</td>
<td>Activity Logs</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Ulaley</td>
<td>Telephone Lists</td>
</tr>
</tbody>
</table>

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists
Reading Information

• Information flows *up*, not *down*
 • “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 1)
 • Subject s can read object o iff, $L(o) \leq L(s)$ and s has permission to read o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no reads up” rule
Writing Information

• Information flows up, not down
 • “Writes up” allowed, “writes down” disallowed

• *-Property (Step 1)
 • Subject s can write object o iff $L(s) \leq L(o)$ and s has permission to write o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no writes down” rule
Basic Security Theorem, Step 1

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *-property, step 1, then every state of the system is secure
 - Proof: induct on the number of transitions
Bell-LaPadula Model, Step 2

• Expand notion of security level to include categories
• Security level is \((\text{clearance}, \text{category set})\)
• Examples
 • \((\text{Top Secret}, \{\text{NUC, EUR, ASI}\})\)
 • \((\text{Confidential}, \{\text{EUR, ASI}\})\)
 • \((\text{Secret}, \{\text{NUC, ASI}\})\)
Levels and Lattices

• \((A, C)\) dom \((A', C')\) iff \(A' \leq A\) and \(C' \subseteq C\)

• Examples
 • (Top Secret, \{NUC, ASI\}) dom (Secret, \{NUC\})
 • (Secret, \{NUC, EUR\}) dom (Confidential,\{NUC, EUR\})
 • (Top Secret, \{NUC\}) \(\not\) dom (Confidential, \{EUR\})

• Let \(C\) be set of classifications, \(K\) set of categories. Set of security levels \(L = C \times K\), dom form lattice
 • \(lub(L) = (\max(A), C)\)
 • \(glb(L) = (\min(A), \emptyset)\)