ECS 235B, Lecture 6

Januar y 18, 2019

Trust in Formal Methods

1. Proof has no errors

e Bugs in automated theorem provers
Preconditions hold in environment in which S is to be used

3. Stransformed into executable S” whose actions follow source code
e Compiler bugs, linker/loader/library problems

4. Hardware executes S’ as intended
* Hardware bugs (Pentium £00£f bug, for example)

Types of Access Control

* Discretionary Access Control (DAC, IBAC)

* Individual user sets access control mechanism to allow or deny access to an
object

* Mandatory Access Control (MAC)

e System mechanism controls access to object, and individual cannot alter that
access

* Originator Controlled Access Control (ORCON, ORGCON)

* Originator (creator) of information controls who can access information

Types of Mechanisms

&

-,

SN AR
e

—~
o

-,

A

f/f%fﬁ%ﬁ 3

CEEY

G

i
<

o,
-,

- o
-

T
-

Y,

#
e
.

broad

precise

secure

set of secure states

ECS 235B, Foundations of Computer and Information Security

set of reachable states

)

A
[
|
\

January 18, 2019

Secure, Precise Mechanisms

* Can one devise a procedure for developing a mechanism that is both
secure and precise?

* Consider confidentiality policies only here
* Integrity policies produce same result

* Program a function with multiple inputs and one output

* Let p be a function p: I; x ... x I, — R. Then p is a program with n inputs i, € I,
1< k<n,and one outputr >R

Programs and Postulates

* Observability Postulate: the output of a function encodes all available
information about its inputs

e Covert channels considered part of the output

* Example: authentication function
* Inputs name, password; output Good or Bad
* |If name invalid, immediately print Bad; else access database
* Problem: time output of Bad, can determine if name valid
* This means timing is part of output

Protection Mechanism

* Let p be a function p: I, x ... x|, — R. A protection mechanism m is a
function

mil,x..xl —>RUE

for which, when i, € I,, 1 < k < n, either
* m(iy, ..., i) = pliy, ..., i,) or
* m(iy, ..., i,) € E.

* £ is set of error outputs

* In above example, E = { “Password Database Missing”, “Password Database
Locked” }

Confidentiality Policy

* Confidentiality policy for program p says which inputs can be revealed
* Formally, for p: I; x ... x I, — R, itis a functionc: I; x ... x I, > A, where
AcClx..xI
* Ais set of inputs available to observer

e Security mechanism is function

m:lyx..xIlL—>RUE
* missecureif and only if 3m’: A— R U E such that,
Vieel,1<k<sn m(iy, ..., i) =m’(cliy, ..., i,))
* m returns values consistent with ¢

Examples

* c(iy, ..., i,) = C, a constant

* Deny observer any information (output does not vary with inputs)
* cliy, ..., i) =iy, «ory i), @and m” =m

* Allow observer full access to information
* C(iy, vy ip) = Iq

* Allow observer information about first input but no information about other
inputs.

Precision

* Security policy may be over-restrictive
* Precision measures how over-restrictive

* my, m, distinct protection mechanisms for program p under policy ¢
* m, as precise as m, (m, = m,) if, for all inputs i, ..., i,,
ms(iy, .., i) = pliy, ., iy) = myliy, ..., i) = pliy, ..., i,)
* m, more precise than m, (m, ~ m,) if thereis an input (i;’, ..., i) such that
mq(iy", ..., i) =pliy, ..., i,") and m,(iy", ..., i) 2 pli, ..., i,).

Combining Mechanisms

* my, m, protection mechanisms

*my;=m;Um,
* For inputs on which m; and m, return same value as p, m; does also;
otherwise, m; returns same value as m;

* Theorem: if m;, m, secure, then m; secure
* Also, my=m;and my=m,
* Follows from definitions of secure, precise, and m;

Existence Theorem

* For any program p and security policy ¢, there exists a precise, secure
mechanism m* such that, for all secure mechanisms m associated
withpandc, m* = m

* Maximally precise mechanism
* Ensures security
* Minimizes number of denials of legitimate actions

Lack of Effective Procedure

* There is no effective procedure that determines a maximally precise,
secure mechanism for any policy and program.

e Sketch of proof: let policy ¢ be constant function, and p compute function
T(x). Assume T(x) = 0. Consider program g, where

o
if z = 0 then y := 1 else y := 2;
halt;

Rest of Sketch

* m associated with g, y value of m, z output of p corresponding to T(x)
e VXx[T(x)=0] > m(x)=1

e dx"[T(x") # 0] > m(x) = 2 or m(x) undefined

* If you can determine m, you can determine whether T(x) = O for all x
* Determines some information about input (is it 0?)

e Contradicts constancy of c.

* Therefore no such procedure exists

Key Points

* Policies describe what is allowed
* Mechanisms control how policies are enforced
* Trust underlies everything

Outline

* Overview
 What is a confidentiality model

e Bell-LaPadula Model

* General idea
* Informal description of rules
 Formal description of rules
* Tranquility
* Declassification
* Controversy

e T-property
e System Z

Confidentiality Policy

* Goal: prevent the unauthorized disclosure of information
e Deals with information flow
* Integrity incidental

* Multi-level security models are best-known examples
* Bell-LaPadula Model basis for many, or most, of these

Bell-LaPadula Model, Step 1

* Security levels arranged in linear ordering
* Top Secret: highest
* Secret
* Confidential
* Unclassified: lowest

* Levels consist are called security clearance L(s) for subjects and
security classification L(o) for objects

Example

security level subject |object

Top Secret Tamara |Personnel Files
Secret Samuel |E-Mail Files
Confidential Claire Activity Logs
Unclassified Ulaley Telephone Lists

e Tamara can read all files

e Claire cannot read Personnel or E-Mail Files

e Ulaley can only read Telephone Lists

Reading Information

* Information flows up, not down
* “Reads up” disallowed, “reads down” allowed

* Simple Security Condition (Step 1)
» Subject s can read object o iff, L(0) £ L(s) and s has permission to read o

* Note: combines mandatory control (relationship of security levels) and discretionary
control (the required permission)

* Sometimes called “no reads up” rule

Writing Information

 Information flows up, not down
e “Writes up” allowed, “writes down” disallowed

e *-Property (Step 1)
e Subject s can write object o iff L(s) < L(o) and s has permission to write o

* Note: combines mandatory control (relationship of security levels) and discretionary
control (the required permission)

e Sometimes called “no writes down” rule

Basic Security Theorem, Step 1

* If a system is initially in a secure state, and every transition of the
system satisfies the simple security condition, step 1, and the *-
property, step 1, then every state of the system is secure

 Proof: induct on the number of transitions

Bell-LaPadula Model, Step 2

* Expand notion of security level to include categories
 Security level is (clearance, category set)

* Examples
* (Top Secret, { NUC, EUR, ASI })
e (Confidential, { EUR, ASI })
e (Secret, { NUC, ASI })

Levels and Lattices

*(A,C)dom (A, C)iff A"<Aand C'cC

* Examples
* (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
e (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
* (Top Secret, {NUC}) —dom (Confidential, {EUR})

* Let C be set of classifications, K set of categories. Set of security levels
L =C x K, dom form lattice
* lub(L) = (max(A), C)
* glb(L) = (min(A), &)

