ECS 235B, Lecture 6

January 18, 2019

Trust in Formal Methods

- 1. Proof has no errors
 - Bugs in automated theorem provers
- 2. Preconditions hold in environment in which *S* is to be used
- 3. S transformed into executable S' whose actions follow source code
 - Compiler bugs, linker/loader/library problems
- 4. Hardware executes S' as intended
 - Hardware bugs (Pentium f00f bug, for example)

Types of Access Control

- Discretionary Access Control (DAC, IBAC)
 - Individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
 - System mechanism controls access to object, and individual cannot alter that access
- Originator Controlled Access Control (ORCON, ORGCON)
 - Originator (creator) of information controls who can access information

Types of Mechanisms

Secure, Precise Mechanisms

- Can one devise a procedure for developing a mechanism that is both secure *and* precise?
 - Consider confidentiality policies only here
 - Integrity policies produce same result
- Program a function with multiple inputs and one output
 - Let *p* be a function $p: I_1 \times ... \times I_n \rightarrow R$. Then *p* is a program with *n* inputs $i_k \in I_k$, $1 \le k \le n$, and one output $r \rightarrow R$

Programs and Postulates

- Observability Postulate: the output of a function encodes all available information about its inputs
 - Covert channels considered part of the output
- Example: authentication function
 - Inputs name, password; output Good or Bad
 - If name invalid, immediately print Bad; else access database
 - Problem: time output of Bad, can determine if name valid
 - This means timing is part of output

Protection Mechanism

• Let p be a function p: $I_1 \times ... \times I_n \rightarrow R$. A protection mechanism m is a function

$$m: I_1 \times \ldots \times I_n \to R \cup E$$

for which, when $i_k \in I_k$, $1 \le k \le n$, either

- $m(i_1, ..., i_n) = p(i_1, ..., i_n)$ or
- $m(i_1, ..., i_n) \in E$.
- E is set of error outputs
 - In above example, E = { "Password Database Missing", "Password Database Locked" }

Confidentiality Policy

- Confidentiality policy for program *p* says which inputs can be revealed
 - Formally, for $p: I_1 \times ... \times I_n \rightarrow R$, it is a function $c: I_1 \times ... \times I_n \rightarrow A$, where $A \subseteq I_1 \times ... \times I_n$
 - A is set of inputs available to observer
- Security mechanism is function

$$m: I_1 \times \ldots \times I_n \to R \cup E$$

• *m* is secure if and only if $\exists m': A \rightarrow R \cup E$ such that,

$$\forall i_k \in I_k, 1 \le k \le n, m(i_1, ..., i_n) = m'(c(i_1, ..., i_n))$$

• *m* returns values consistent with *c*

Examples

- $c(i_1, ..., i_n) = C$, a constant
 - Deny observer any information (output does not vary with inputs)
- $c(i_1, ..., i_n) = (i_1, ..., i_n)$, and m' = m
 - Allow observer full access to information
- $c(i_1, ..., i_n) = i_1$
 - Allow observer information about first input but no information about other inputs.

Precision

- Security policy may be over-restrictive
 - Precision measures how over-restrictive
- m_1 , m_2 distinct protection mechanisms for program p under policy c
 - m_1 as precise as m_2 ($m_1 \approx m_2$) if, for all inputs $i_1, ..., i_n$, $m_2(i_1, ..., i_n) = p(i_1, ..., i_n) \Longrightarrow m_1(i_1, ..., i_n) = p(i_1, ..., i_n)$
 - m_1 more precise than m_2 ($m_1 \sim m_2$) if there is an input $(i_1', ..., i_n')$ such that $m_1(i_1', ..., i_n') = p(i_1', ..., i_n')$ and $m_2(i_1', ..., i_n') \neq p(i_1', ..., i_n')$.

Combining Mechanisms

- m_1 , m_2 protection mechanisms
- $m_3 = m_1 \cup m_2$
 - For inputs on which m_1 and m_2 return same value as p, m_3 does also; otherwise, m_3 returns same value as m_1
- Theorem: if m_1 , m_2 secure, then m_3 secure
 - Also, $m_3 \approx m_1$ and $m_3 \approx m_2$
 - Follows from definitions of secure, precise, and m₃

Existence Theorem

- For any program p and security policy c, there exists a precise, secure mechanism m* such that, for all secure mechanisms m associated with p and c, m* ≈ m
 - Maximally precise mechanism
 - Ensures security
 - Minimizes number of denials of legitimate actions

Lack of Effective Procedure

- There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program.
 - Sketch of proof: let policy c be constant function, and p compute function T(x). Assume T(x) = 0. Consider program q, where

```
p;
if z = 0 then y := 1 else y := 2;
halt;
```

Rest of Sketch

- *m* associated with *q*, *y* value of *m*, *z* output of *p* corresponding to *T*(*x*)
- $\forall x[T(x) = 0] \rightarrow m(x) = 1$
- $\exists x' [T(x') \neq 0] \rightarrow m(x) = 2 \text{ or } m(x) \text{ undefined}$
- If you can determine *m*, you can determine whether T(x) = 0 for all x
- Determines some information about input (is it 0?)
- Contradicts constancy of *c*.
- Therefore no such procedure exists

Key Points

- Policies describe *what* is allowed
- Mechanisms control *how* policies are enforced
- Trust underlies everything

Outline

- Overview
 - What is a confidentiality model
- Bell-LaPadula Model
 - General idea
 - Informal description of rules
 - Formal description of rules
- Tranquility
- Declassification
- Controversy
 - +-property
 - System Z

Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity incidental
- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest
- Levels consist are called *security clearance L(s)* for subjects and *security classification L(o)* for objects

Example

security level	subject	object
Top Secret	Tamara	Personnel Files
Secret	Samuel	E-Mail Files
Confidential	Claire	Activity Logs
Unclassified	Ulaley	Telephone Lists

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists

Reading Information

- Information flows *up*, not *down*
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 1)
 - Subject s can read object o iff, $L(o) \le L(s)$ and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property (Step 1)
 - Subject s can write object o iff $L(s) \le L(o)$ and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Basic Security Theorem, Step 1

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *- property, step 1, then every state of the system is secure
 - Proof: induct on the number of transitions

Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (*clearance, category set*)
- Examples
 - (Top Secret, { NUC, EUR, ASI })
 - (Confidential, { EUR, ASI })
 - (Secret, {NUC, ASI })

Levels and Lattices

- (A, C) dom (A', C') iff $A' \leq A$ and $C' \subseteq C$
- Examples
 - (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
 - (Secret, {NUC, EUR}) dom (Confidential, {NUC, EUR})
 - (Top Secret, {NUC}) ¬dom (Confidential, {EUR})
- Let C be set of classifications, K set of categories. Set of security levels
 - $L = C \times K$, *dom* form lattice
 - lub(L) = (max(A), C)
 - $glb(L) = (min(A), \emptyset)$