
ECS 235B, Lecture 6
January 18, 2019

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 1

Trust in Formal Methods

1. Proof has no errors
• Bugs in automated theorem provers

2. Preconditions hold in environment in which S is to be used
3. S transformed into executable S¢ whose actions follow source code
• Compiler bugs, linker/loader/library problems

4. Hardware executes S¢ as intended
• Hardware bugs (Pentium f00f bug, for example)

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 2

Types of Access Control

• Discretionary Access Control (DAC, IBAC)
• Individual user sets access control mechanism to allow or deny access to an

object

• Mandatory Access Control (MAC)
• System mechanism controls access to object, and individual cannot alter that

access

• Originator Controlled Access Control (ORCON, ORGCON)
• Originator (creator) of information controls who can access information

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 3

January 18, 2019

Types of Mechanisms

secure precise broad

set of reachable states set of secure states

ECS 235B, Foundations of Computer and Information Security 4

Secure, Precise Mechanisms

• Can one devise a procedure for developing a mechanism that is both
secure and precise?
• Consider confidentiality policies only here
• Integrity policies produce same result

• Program a function with multiple inputs and one output
• Let p be a function p: I1 ´ ... ´ In® R. Then p is a program with n inputs ik Î Ik,

1 ≤ k ≤ n, and one output r® R

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 5

Programs and Postulates

• Observability Postulate: the output of a function encodes all available
information about its inputs
• Covert channels considered part of the output

• Example: authentication function
• Inputs name, password; output Good or Bad
• If name invalid, immediately print Bad; else access database
• Problem: time output of Bad, can determine if name valid
• This means timing is part of output

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 6

Protection Mechanism

• Let p be a function p: I1 ´ ... ´ In ® R. A protection mechanism m is a
function

m: I1 ´ ... ´ In ® R È E
for which, when ik Î Ik, 1 ≤ k ≤ n, either
• m(i1, ..., in) = p(i1, ..., in) or
• m(i1, ..., in) Î E.

• E is set of error outputs
• In above example, E = { “Password Database Missing”, “Password Database

Locked” }

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 7

Confidentiality Policy

• Confidentiality policy for program p says which inputs can be revealed
• Formally, for p: I1 ´ ... ´ In ® R, it is a function c: I1 ´ ... ´ In ® A, where

A Í I1 ´ ... ´ In
• A is set of inputs available to observer

• Security mechanism is function
m: I1 ´ ... ´ In ® R È E

• m is secure if and only if $ m´: A ® R È E such that,
"ik Î Ik, 1 ≤ k ≤ n, m(i1, ..., in) = m´(c(i1, ..., in))

• m returns values consistent with c

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 8

Examples

• c(i1, ..., in) = C, a constant
• Deny observer any information (output does not vary with inputs)

• c(i1, ..., in) = (i1, ..., in), and m´ = m
• Allow observer full access to information

• c(i1, ..., in) = i1
• Allow observer information about first input but no information about other

inputs.

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 9

Precision

• Security policy may be over-restrictive
• Precision measures how over-restrictive

• m1, m2 distinct protection mechanisms for program p under policy c
• m1 as precise as m2 (m1 ≈ m2) if, for all inputs i1, …, in,

m2(i1, …, in) = p(i1, …, in) Þ m1(i1, …, in) = p(i1, …, in)
• m1 more precise than m2 (m1 ~ m2) if there is an input (i1´, …, in´) such that

m1(i1´, …, in´) = p(i1´, …, in´) and m2(i1´, …, in´) ≠ p(i1´, …, in´).

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 10

Combining Mechanisms

• m1, m2 protection mechanisms
• m3 = m1 Èm2
• For inputs on which m1 and m2 return same value as p, m3 does also;

otherwise, m3 returns same value as m1

• Theorem: if m1, m2 secure, then m3 secure
• Also, m3 ≈ m1 and m3 ≈ m2

• Follows from definitions of secure, precise, and m3

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 11

Existence Theorem

• For any program p and security policy c, there exists a precise, secure
mechanism m* such that, for all secure mechanisms m associated
with p and c, m* ≈ m
• Maximally precise mechanism
• Ensures security
• Minimizes number of denials of legitimate actions

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 12

Lack of Effective Procedure

• There is no effective procedure that determines a maximally precise,
secure mechanism for any policy and program.
• Sketch of proof: let policy c be constant function, and p compute function
T(x). Assume T(x) = 0. Consider program q, where

p;
if z = 0 then y := 1 else y := 2;
halt;

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 13

Rest of Sketch

• m associated with q, y value of m, z output of p corresponding to T(x)
• "x[T(x) = 0] ®m(x) = 1
• $x´ [T(x´) ≠ 0] ®m(x) = 2 or m(x) undefined
• If you can determine m, you can determine whether T(x) = 0 for all x
• Determines some information about input (is it 0?)
• Contradicts constancy of c.
• Therefore no such procedure exists

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 14

Key Points

• Policies describe what is allowed
• Mechanisms control how policies are enforced
• Trust underlies everything

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 15

Outline

• Overview
• What is a confidentiality model

• Bell-LaPadula Model
• General idea
• Informal description of rules
• Formal description of rules

• Tranquility
• Declassification
• Controversy

• †-property
• System Z

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 16

Confidentiality Policy

• Goal: prevent the unauthorized disclosure of information
• Deals with information flow
• Integrity incidental

• Multi-level security models are best-known examples
• Bell-LaPadula Model basis for many, or most, of these

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 17

Bell-LaPadula Model, Step 1

• Security levels arranged in linear ordering
• Top Secret: highest
• Secret
• Confidential
• Unclassified: lowest

• Levels consist are called security clearance L(s) for subjects and
security classification L(o) for objects

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 18

Example

security level subject object

Top Secret Tamara Personnel Files

Secret Samuel E-Mail Files

Confidential Claire Activity Logs

Unclassified Ulaley Telephone Lists

• Tamara can read all files
• Claire cannot read Personnel or E-Mail Files
• Ulaley can only read Telephone Lists

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 19

Reading Information

• Information flows up, not down
• “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 1)
• Subject s can read object o iff, L(o) ≤ L(s) and s has permission to read o

• Note: combines mandatory control (relationship of security levels) and discretionary
control (the required permission)

• Sometimes called “no reads up” rule

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 20

Writing Information

• Information flows up, not down
• “Writes up” allowed, “writes down” disallowed

• *-Property (Step 1)
• Subject s can write object o iff L(s) ≤ L(o) and s has permission to write o

• Note: combines mandatory control (relationship of security levels) and discretionary
control (the required permission)

• Sometimes called “no writes down” rule

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 21

Basic Security Theorem, Step 1

• If a system is initially in a secure state, and every transition of the
system satisfies the simple security condition, step 1, and the *-
property, step 1, then every state of the system is secure
• Proof: induct on the number of transitions

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 22

Bell-LaPadula Model, Step 2

• Expand notion of security level to include categories
• Security level is (clearance, category set)
• Examples
• (Top Secret, { NUC, EUR, ASI })
• (Confidential, { EUR, ASI })
• (Secret, { NUC, ASI })

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 23

Levels and Lattices

• (A, C) dom (A¢, C¢) iff A¢ ≤ A and C¢ Í C
• Examples
• (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
• (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
• (Top Secret, {NUC}) ¬dom (Confidential, {EUR})

• Let C be set of classifications, K set of categories. Set of security levels
L = C ´ K, dom form lattice
• lub(L) = (max(A), C)
• glb(L) = (min(A), Æ)

January 18, 2019 ECS 235B, Foundations of Computer and Information Security 24

