ECS 235B, Lecture 9

January 28, 2019
Example

- \(S = \{ s \} \), \(O = \{ o \} \), \(P = \{ r, w \} \)
- \(C = \{ \text{High, Low} \} \), \(K = \{ \text{All} \} \)
- For every \(f \in F \), either \(f_c(s) = (\text{High}, \{\text{All}\}) \) or \(f_c(s) = (\text{Low}, \{\text{All}\}) \)
- Initial State:
 - \(b_1 = \{ (s, o, r) \} \), \(m_1 \in M \) gives \(s \) read access over \(o \), and for \(f_1 \in F \), \(f_{c,1}(s) = (\text{High}, \{\text{All}\}), f_{o,1}(o) = (\text{Low}, \{\text{All}\}) \)
 - Call this state \(v_0 = (b_1, m_1, f_1, h_1) \in V. \)
First Transition

• Now suppose in state v_0: $S = \{ s, s' \}$
• Suppose $f_{s,1}(s') = (\text{Low}, \{\text{All}\})$, $m_1 \in M$ gives s read access over o and s' write access to o
• As s' not written to o, $b_1 = \{ (s, o, r) \}$
• $z_0 = v_0$; if s' requests r_1 to write to o:
 • System decides $d_1 = y$ (as m_1 gives it that right, and $f_{s,1}(s') = f_o(o)$
 • New state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 • $b_2 = \{ (s, o, r), (s', o, w) \}$
 • Here, $x = (r_1), y = (y), z = (v_0, v_1)$
Second Transition

• Current state \(v_1 = (b_2, m_1, f_1, h_1) \in V \)
 • \(b_2 = \{ (s, o, r), (s', o, w) \} \)
 • \(f_{c,1}(s) = \text{High}, \{ \text{All} \} \), \(f_{o,1}(o) = \text{Low}, \{ \text{All} \} \)

• \(s \) requests \(r_2 \) to write to \(o \):
 • System decides \(d_2 = n \) (as \(f_{c,1}(s) \) \(dom f_{o,1}(o) \))
 • New state \(v_2 = (b_2, m_1, f_1, h_1) \in V \)
 • \(b_2 = \{ (s, o, r), (s', o, w) \} \)
 • So, \(x = (r_1, r_2), y = (y, n), z = (v_0, v_1, v_2) \), where \(v_2 = v_1 \)
Basic Security Theorem

• Define action, secure formally
 • Using a bit of foreshadowing for “secure”

• Restate properties formally
 • Simple security condition
 • *-property
 • Discretionary security property

• State conditions for properties to hold

• State Basic Security Theorem
Action

• A request and decision that causes the system to move from one state to another
 • Final state may be the same as initial state
• \((r, d, v, v') \in R \times D \times V \times V\) is an action of \(\Sigma(R, D, W, z_0)\) iff there is an \((x, y, z) \in \Sigma(R, D, W, z_0)\) and a \(t \in N\) such that \((r, d, v, v') = (x_t, y_t, z_t, z_{t-1})\)
 • Request \(r\) made when system in state \(v'\); decision \(d\) moves system into (possibly the same) state \(v\)
 • Correspondence with \((x_t, y_t, z_t, z_{t-1})\) makes states, requests, part of a sequence
Simple Security Condition

• \((s, o, p) \in S \times O \times P\) satisfies the simple security condition relative to \(f\) (written \(ssc \ rel \ f\)) iff one of the following holds:
 1. \(p = e\) or \(p = a\)
 2. \(p = r\) or \(p = w\) and \(f_s(s) \ dom f_o(o)\)

• Holds vacuously if rights do not involve reading
• If all elements of \(b\) satisfy \(ssc \ rel \ f\), then state satisfies simple security condition
• If all states satisfy simple security condition, system satisfies simple security condition
Necessary and Sufficient

• \(\Sigma(R, D, W, z_0) \) satisfies the simple security condition for any secure state \(z_0 \) iff for every action \((r, d, (b, m, f, h), (b', m', f', h'))\), \(W \) satisfies
 • Every \((s, o, p) \in b - b'\) satisfies \(ssc\ \text{rel} \ f\)
 • Every \((s, o, p) \in b'\) that does not satisfy \(ssc\ \text{rel} \ f\) is not in \(b \)

• Note: “secure” means \(z_0 \) satisfies \(ssc\ \text{rel} \ f\)

• First says every \((s, o, p)\) added satisfies \(ssc\ \text{rel} \ f\); second says any \((s, o, p)\) in \(b'\) that does not satisfy \(ssc\ \text{rel} \ f\) is deleted
*-Property

- $b(s: p_1, ..., p_n)$ set of all objects that s has $p_1, ..., p_n$ access to
- State (b, m, f, h) satisfies the *-property iff for each $s \in S$ the following hold:
 1. $b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) [f_o(o) \text{ dom } f_c(s)]]$
 2. $b(s: w) \neq \emptyset \Rightarrow [\forall o \in b(s: w) [f_o(o) = f_c(s)]]$
 3. $b(s: r) \neq \emptyset \Rightarrow [\forall o \in b(s: r) [f_c(s) \text{ dom } f_o(o)]]$
- Idea: for writing, object dominates subject; for reading, subject dominates object
*-Property

• If all states satisfy simple security condition, system satisfies simple security condition

• If a subset S' of subjects satisfy *-property, then *-property satisfied relative to $S' \subseteq S$

• Note: tempting to conclude that *-property includes simple security condition, but this is false
 • See condition placed on w right for each
Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies the following for every $s \in S'$
 • Every $(s, o, p) \in b - b'$ satisfies the *-property relative to S'
 • Every $(s, o, p) \in b'$ that does not satisfy the *-property relative to S' is not in b

• Note: “secure” means z_0 satisfies *-property relative to S'

• First says every (s, o, p) added satisfies the *-property relative to S'; second says any (s, o, p) in b' that does not satisfy the *-property relative to S' is deleted
Discretionary Security Property

- State \((b, m, f, h)\) satisfies the discretionary security property iff, for each \((s, o, p) \in b\), then \(p \in m[s, o]\)
- Idea: if \(s\) can read \(o\), then it must have rights to do so in the access control matrix \(m\)
- This is the discretionary access control part of the model
 - The other two properties are the mandatory access control parts of the model
Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the ds-property for any secure state z_0 iff, for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies:
 • Every $(s, o, p) \in b - b'$ satisfies the ds-property
 • Every $(s, o, p) \in b'$ that does not satisfy the ds-property is not in b

• Note: “secure” means z_0 satisfies ds-property

• First says every (s, o, p) added satisfies the ds-property; second says any (s, o, p) in b' that does not satisfy the *-property is deleted
Secure

• A system is secure iff it satisfies:
 • Simple security condition
 • *-property
 • Discretionary security property

• A state meeting these three properties is also said to be secure
Basic Security Theorem

- $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and W satisfies the conditions for the preceding three theorems
 - The theorems are on the slides titled “Necessary and Sufficient”
Rule

• $\rho: R \times V \rightarrow D \times V$

• Takes a state and a request, returns a decision and a (possibly new) state

• Rule ρ ssc-preserving if for all $(r, v) \in R \times V$ and v satisfying ssc rel f, $\rho(r, v) = (d, v')$ means that v' satisfies ssc rel f'.
 • Similar definitions for *-property, ds-property
 • If rule meets all 3 conditions, it is security-preserving
Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in a state
 • if two rules act on a read request in state v ...

• Solution: define relation $W(\omega)$ for a set of rules $\omega = \{ \rho_1, ..., \rho_m \}$ such that a state $(r, d, v, v') \in W(\omega)$ iff either
 • $d = i$; or
 • for exactly one integer j, $\rho_j(r, v) = (d, v')$

• Either request is illegal, or only one rule applies
Rules Preserving SSC

• Let ω be set of ssc-preserving rules. Let state z_0 satisfy simple security condition. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies simple security condition

Proof: by contradiction.

• Choose $(x, y, z) \in \Sigma(R, D, W(\omega), z_0)$ as state not satisfying simple security condition; then choose $t \in N$ such that (x_t, y_t, z_t) is first appearance not meeting simple security condition

• As $(x_t, y_t, z_t, z_{t-1}) \in W(\omega)$, there is unique rule $\rho \in \omega$ such that $\rho(x_t, z_{t-1}) = (y_t, z_t)$ and $y_t \neq i$.

• As ρ ssc-preserving, and z_{t-1} satisfies simple security condition, then z_t meets simple security condition, contradiction.
Adding States Preserving SSC

• Let \(v = (b, m, f, h) \) satisfy simple security condition. Let \((s, o, p) \notin b, b' = b \cup \{(s, o, p)\} \), and \(v' = (b', m, f, h) \). Then \(v' \) satisfies simple security condition iff:

 1. Either \(p = e \) or \(p = a; \) or
 2. Either \(p = r \) or \(p = w \), and \(f_c(s) \text{ dom } f_o(o) \)

Proof:

 1. Immediate from definition of simple security condition and \(v' \) satisfying \(ssc_{rel} f \)
 2. \(v' \) satisfies simple security condition means \(f_c(s) \text{ dom } f_o(o) \), and for converse, \((s, o, p) \in b' \) satisfies \(ssc_{rel} f \), so \(v' \) satisfies simple security condition
Rules, States Preserving *-Property

• Let ω be set of *-property-preserving rules, state z_0 satisfies the *-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies *-property

• Let $v = (b, m, f, h)$ satisfy *-property. Let $(s, o, p) \notin b$, $b' = b \cup \{(s, o, p)\}$, and $v' = (b', m, f, h)$. Then v' satisfies *-property iff one of the following holds:
 1. $p = a$ and $f_o(o) \text{ dom } f_c(s)$
 2. $p = w$ and $f_c(s) = f_o(o)$
 3. $p = r$ and $f_c(s) \text{ dom } f_c(o)$
Rules, States Preserving ds-Property

• Let ω be set of ds-property-preserving rules, state z_0 satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property

• Let $\nu = (b, m, f, h)$ satisfy ds-property. Let $(s, o, p) \notin b$, $b' = b \cup \{(s, o, p)\}$, and $\nu' = (b', m, f, h)$. Then ν' satisfies ds-property iff $p \in m[s, o]$.
Combining

• Let \(\rho \) be a rule and \(\rho(r, v) = (d, v') \), where \(v = (b, m, f, h) \) and \(v' = (b', m', f', h') \). Then:
 1. If \(b' \subseteq b, f' = f \), and \(v \) satisfies the simple security condition, then \(v' \) satisfies the simple security condition
 2. If \(b' \subseteq b, f' = f \), and \(v \) satisfies the *-property, then \(v' \) satisfies the *-property
 3. If \(b' \subseteq b, m[s, o] \subseteq m'[s, o] \) for all \(s \in S \) and \(o \in O \), and \(v \) satisfies the ds-property, then \(v' \) satisfies the ds-property
Proof

1. Suppose v satisfies simple security property.
 a) $b' \subseteq b$ and \((s, o, r) \in b'\) implies \((s, o, r) \in b\)
 b) $b' \subseteq b$ and \((s, o, w) \in b'\) implies \((s, o, w) \in b\)
 c) So $f_c(s) \text{ dom } f_o(o)$
 d) But $f' = f$
 e) Hence $f'_c(s) \text{ dom } f'_o(o)$
 f) So v' satisfies simple security condition

2, 3 proved similarly
Example Instantiation: Multics

• 11 rules affect rights:
 • set to request, release access
 • set to give, remove access to different subject
 • set to create, reclassify objects
 • set to remove objects
 • set to change subject security level

• Set of “trusted” subjects $S_T \subseteq S$
 • *-property not enforced; subjects trusted not to violate it

• $\Delta(\rho)$ domain
 • determines if components of request are valid
get-read Rule

- Request $r = (get, s, o, r)$
 - s gets (requests) the right to read o

- Rule is $\rho_1(r, v)$:

 $$
 \text{if } (r \neq \Delta(\rho_1)) \text{ then } \rho_1(r, v) = (i, v);
 $$

 $$
 \text{else if } (f_s(s) \text{ dom } f_o(o) \text{ and } [s \in S_T \text{ or } f_c(s) \text{ dom } f_o(o)] \text{ and } r \in m[s, o])
 \text{ then } \rho_1(r, v) = (y, (b \cup \{ (s, o, r) \}, m, f, h));
 $$

 $$
 \text{else } \rho_1(r, v) = (n, v);
 $$
Security of Rule

• The get-read rule preserves the simple security condition, the *-property, and the ds-property

Proof:

• Let \(v \) satisfy all conditions. Let \(\rho_1(r, v) = (d, v') \). If \(v' = v \), result is trivial. So let \(v' = (b \cup \{ (s_2, o, r) \}, m, f, h) \).
Proof

• Consider the simple security condition.
 • From the choice of v', either $b' - b = \emptyset$ or $\{(s_2, o, r)\}$
 • If $b' - b = \emptyset$, then $\{(s_2, o, r)\} \in b$, so $v = v'$, proving that v' satisfies the simple security condition.
 • If $b' - b = \{(s_2, o, r)\}$, because the get-read rule requires that $f_c(s) \text{ dom } f_o(o)$,
an earlier result says that v' satisfies the simple security condition.
Proof

• Consider the *-property.
 • Either $s_2 \in S_T$ or $f_c(s) \text{ dom } f_o(o)$ from the definition of get-read
 • If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T.
 • If $f_c(s) \text{ dom } f_o(o)$, an earlier result says that v' satisfies the simple security condition.
Proof

• Consider the discretionary security property.
 • Conditions in the get-read rule require \(r \in m[s, o] \) and either \(b' - b = \emptyset \) or \(\{ (s_2, o, r) \} \)
 • If \(b' - b = \emptyset \), then \(\{ (s_2, o, r) \} \in b \), so \(v = v' \), proving that \(v' \) satisfies the simple security condition.
 • If \(b' - b = \{ (s_2, o, r) \} \), then \(\{ (s_2, o, r) \} \notin b \), an earlier result says that \(v' \) satisfies the ds-property.
give-read Rule

• Request \(r = (s_1, \text{give}, s_2, o, r) \)
 • \(s_1 \) gives (request to give) \(s_2 \) the (discretionary) right to read \(o \)
 • Rule: can be done if giver can alter parent of object
 • If object or parent is root of hierarchy, special authorization required

• Useful definitions
 • \(\text{root}(o) \): root object of hierarchy \(h \) containing \(o \)
 • \(\text{parent}(o) \): parent of \(o \) in \(h \) (so \(o \in h(\text{parent}(o)) \))
 • \(\text{canallow}(s, o, v) \): \(s \) specially authorized to grant access when object or parent of object is root of hierarchy
 • \(m \land m[s, o] \leftarrow r \): access control matrix \(m \) with \(r \) added to \(m[s, o] \)
give-read Rule

- Rule is $\rho_6(r, v)$:

 if ($r \neq \Delta(\rho_6)$) then $\rho_6(r, v) = (i, v)$;

 else if ($[o \neq \text{root}(o) \text{ and parent}(o) \neq \text{root}(o) \text{ and parent}(o) \in b(s_1:w)]$ or $[\text{parent}(o) = \text{root}(o) \text{ and canallow}(s_1, o, v)]$ or $[o = \text{root}(o) \text{ and canallow}(s_1, o, v)]$)
 then $\rho_6(r, v) = (y, (b, m \land \text{m}[s_2, o] \leftarrow \tau, f, h))$;

 else $\rho_1(r, v) = (n, v)$;
Security of Rule

• The *give-read* rule preserves the simple security condition, the *-property, and the ds-property

 • Proof: Let v satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If $v' = v$, result is trivial. So let $v' = (b, m[s_2, o] \leftarrow r, f, h)$. So $b' = b$, $f' = f$, $m[x, y] = m'[x, y]$ for all $x \in S$ and $y \in O$ such that $x \neq s$ and $y \neq o$, and $m[s, o] \subseteq m'[s, o]$. Then by earlier result, v' satisfies the simple security condition, the *-property, and the ds-property.
Principle of Tranquility

- Raising object’s security level
 - Information once available to some subjects is no longer available
 - Usually assume information has already been accessed, so this does nothing

- Lowering object’s security level
 - The *declassification problem*
 - Essentially, a “write down” violating *-property
 - Solution: define set of trusted subjects that sanitize or remove sensitive information before security level lowered
Types of Tranquility

• **Strong Tranquility**
 - The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system

• **Weak Tranquility**
 - The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system
Example: Trusted Solaris

• Security administrator can provide specific authorization for a user to change the MAC label of a file
 • “downgrade file label” authorization
 • “upgrade file label” authorization

• User requires additional authorization if not the owner of the file
 • “act as file owner” authorization
Principles of Declassification

• Principle of Semantic Consistency
 • As long as semantics of components that do not do declassification do not change, the components can be altered without affecting security

• Principle of Occlusion
 • A declassification operation cannot conceal an *improper* declassification

• Principle of Conservativity
 • Absent any declassification, the system is secure

• Principle of Monotonicity of Release
 • When declassification is performed in an authorized manner by authorized subjects, the system remains secure