ECS 235B, Lecture 19

February 22, 2019
Composition of Policies

• Two organizations have two security policies
• They merge
 • How do they combine security policies to create one security policy?
 • Can they create a coherent, consistent security policy?
The Problem

• Single system with 2 users
 • Each has own virtual machine
 • Holly at system high, Lara at system low so they cannot communicate directly

• CPU shared between VMs based on load
 • Forms a *covert channel* through which Holly, Lara can communicate
Example Protocol

• Holly, Lara agree:
 • Begin at noon
 • Lara will sample CPU utilization every minute
 • To send 1 bit, Holly runs program
 • Raises CPU utilization to over 60%
 • To send 0 bit, Holly does not run program
 • CPU utilization will be under 40%

• Not “writing” in traditional sense
 • But information flows from Holly to Lara
Policy vs. Mechanism

• Can be hard to separate these

• In the abstract: CPU forms channel along which information can be transmitted
 • Violates *-property
 • Not “writing” in traditional sense

• Conclusion:
 • Bell-LaPadula model does not give sufficient conditions to prevent communication, or
 • System is improperly abstracted; need a better definition of “writing”
Composition of Bell-LaPadula

• Why?
 • Some standards require secure components to be connected to form secure (distributed, networked) system

• Question
 • Under what conditions is this secure?

• Assumptions
 • Implementation of systems precise with respect to each system’s security policy
Issues

• Compose the lattices

• What is relationship among labels?
 • If the same, trivial
 • If different, new lattice must reflect the relationships among the levels
Example
Analysis

• Assume S < HIGH < TS
• Assume SOUTH, EAST, WEST different

Resulting lattice has:
• 4 clearances (LOW < S < HIGH < TS)
• 3 categories (SOUTH, EAST, WEST)
Same Policies

• If we can change policies that components must meet, composition is trivial (as above)
• If we cannot, we must show composition meets the same policy as that of components; this can be very hard
Different Policies

• What does “secure” now mean?
• Which policy (components) dominates?
• Possible principles:
 • Any access allowed by policy of a component must be allowed by composition of components (*autonomy*)
 • Any access forbidden by policy of a component must be forbidden by composition of components (*security*)
Implications

• Composite system satisfies security policy of components as components’ policies take precedence

• If something neither allowed nor forbidden by principles, then:
 • Allow it (Gong & Qian)
 • Disallow it (Fail-Safe Defaults)
Example

• System X: Bob can’t access Alice’s files
• System Y: Eve, Lilith can access each other’s files
• Composition policy:
 • Bob can access Eve’s files
 • Lilith can access Alice’s files
• Question: can Bob access Lilith’s files?
Solution (Gong & Qian)

• Notation:
 • \((a, b)\): \(a\) can read \(b\)'s files
 • \(\text{AS}(x)\): access set of system \(x\)

• Set-up:
 • \(\text{AS}(X) = \emptyset\)
 • \(\text{AS}(Y) = \{(\text{Eve, Lilith}), (\text{Lilith, Eve})\}\)
 • \(\text{AS}(X \cup Y) = \{(\text{Bob, Eve}), (\text{Lilith, Alice}), (\text{Eve, Lilith}), (\text{Lilith, Eve})\}\)
Solution (Gong & Qian)

• Compute transitive closure of $AS(X \cup Y)$:
 • $AS(X \cup Y)^+ = \{(Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice), (Lilith, Eve), (Lilith, Alice)\}$

• Delete accesses conflicting with policies of components:
 • Delete (Bob, Alice)
 • (Bob, Lilith) in set, so Bob can access Lilith’s files
Idea

• Composition of policies allows accesses not mentioned by original policies
• Generate all possible allowed accesses
 • Computation of transitive closure
• Eliminate forbidden accesses
 • Removal of accesses disallowed by individual access policies
• Everything else is allowed
• Note: determining if access allowed is of polynomial complexity
Information Flow

• Basics and background
 • Entropy
• Non-lattice flow policies
• Compiler-based mechanisms
• Execution-based mechanisms
• Examples
 • Privacy and cell phones
 • Firewalls
Nontransitive Flow Policies

• Government agency information flow policy (on next slide)

• Entities public relations officers PRO, analysts A, spymasters S
 • $\text{confine}(\text{PRO}) = [\text{public, analysis}]$
 • $\text{confine}(\text{A}) = [\text{analysis, top-level}]$
 • $\text{confine}(\text{S}) = [\text{covert, top-level}]$
Information Flow

• By confinement flow model:
 • \(\text{PRO} \leq A \), \(A \leq \text{PRO} \)
 • \(\text{PRO} \leq S \)
 • \(A \leq S \), \(S \leq A \)

• Data cannot flow to public relations officers; not transitive
 • \(S \leq A \), \(A \leq \text{PRO} \)
 • \(S \leq \text{PRO} \) is false
Transforming Into Lattice

• Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
 • Done so this set is partially ordered
 • Means it can be transformed into a lattice

• Can show this mapping preserves ordering relation
 • So it preserves non-orderings and non-transitivity of elements corresponding to those of original set
Dual Mapping

• $R = (SC_R, \leq_R, \text{join}_R)$ reflexive info flow policy
• $P = (S_P, \leq_P)$ ordered set
 • Define dual mapping functions $l_R, h_R: SC_R \rightarrow S_P$
 • $l_R(x) = \{x\}$
 • $h_R(x) = \{y \mid y \in SC_R \land y \leq_R x\}$
• S_P contains subsets of SC_R; \leq_P subset relation
• Dual mapping function order preserving iff
 \[(\forall a, b \in SC_R)[a \leq_R b \iff l_R(a) \leq_P h_R(b)\]
Theorem

Dual mapping from reflexive information flow policy R to ordered set P order-preserving

Proof sketch: all notation as before

(\Rightarrow) Let $a \leq_R b$. Then $a \in l_R(a)$, $a \in h_R(b)$, so $l_R(a) \subseteq h_R(b)$, or $l_R(a) \leq_P h_R(b)$

(\Leftarrow) Let $l_R(a) \leq_P h_R(b)$. Then $l_R(a) \subseteq h_R(b)$. But $l_R(a) = \{a\}$, so $a \in h_R(b)$, giving $a \leq_R b$
Information Flow Requirements

- Interpretation: let \(\text{confine}(x) = [x_L, x_U] \), consider class \(y \)
 - Information can flow from \(x \) to element of \(y \) iff \(x_L \leq_R y \), or \(l_R(x_L) \subseteq h_R(y) \)
 - Information can flow from element of \(y \) to \(x \) iff \(y \leq_R x_U \), or \(l_R(y) \subseteq h_R(x_U) \)
Revisit Government Example

• Information flow policy is R

• Flow relationships among classes are:
 - public \leq_R public
 - public \leq_R analysis
 - public \leq_R covert
 - public \leq_R top-level
 - analysis \leq_R analysis
 - covert \leq_R covert
 - covert \leq_R top-level
 - analysis \leq_R top-level
 - top-level \leq_R top-level
Dual Mapping of R

- Elements l_R, h_R:

 l_R(public) = { public }
 h_R(public = { public }
 l_R(analysis) = { analysis }
 h_R(analysis) = { public, analysis }
 l_R(covert) = { covert }
 h_R(covert) = { public, covert }
 l_R(top-level) = { top-level }
 h_R(top-level) = { public, analysis, covert, top-level }
confine

- Let p be entity of type PRO, a of type A, s of type S
- In terms of P (not R), we get:
 - \(\text{confine}(p) = [\{ \text{public} \}, \{ \text{public, analysis} \}] \)
 - \(\text{confine}(a) = [\{ \text{analysis} \}, \{ \text{public, analysis, covert, top-level} \}] \)
 - \(\text{confine}(s) = [\{ \text{covert} \}, \{ \text{public, analysis, covert, top-level} \}] \)
And the Flow Relations Are ...

• $p \rightarrow a$ as $l_R(p) \subseteq h_R(a)$
 • $l_R(p) = \{ \text{public} \}$
 • $h_R(a) = \{ \text{public, analysis, covert, top-level} \}$

• Similarly: $a \rightarrow p$, $p \rightarrow s$, $a \rightarrow s$, $s \rightarrow a$

• But $s \rightarrow p$ is false as $l_R(s) \not\subseteq h_R(p)$
 • $l_R(s) = \{ \text{covert} \}$
 • $h_R(p) = \{ \text{public, analysis} \}$
Analysis

• \((S_p, \leq_p)\) is a lattice, so it can be analyzed like a lattice policy

• Dual mapping preserves ordering, hence non-ordering and non-transitivity, of original policy
 • So results of analysis of \((S_p, \leq_p)\) can be mapped back into \((SC_R, \leq_R, join_R)\)
Compiler-Based Mechanisms

• Detect unauthorized information flows in a program during compilation

• Analysis not precise, but secure
 • If a flow *could* violate policy (but may not), it is unauthorized
 • No unauthorized path along which information could flow remains undetected

• Set of statements *certified* with respect to information flow policy if flows in set of statements do not violate that policy
Example

```c
if x = 1 then y := a;
else y := b;
```

- Information flows from \(x \) and \(a \) to \(y \), or from \(x \) and \(b \) to \(y \)
- Certified only if \(x \leq y \) and \(a \leq y \) and \(b \leq y \)
 - Note flows for both branches must be true unless compiler can determine that one branch will never be taken
Declarations

• Notation:

\[x: \text{int class } \{ A, B \} \]

means \(x \) is an integer variable with security class at least \(lub\{ A, B \} \), so

\[lub\{ A, B \} \leq x \]

• Distinguished classes *Low, High*
 • Constants are always *Low*
Input Parameters

• Parameters through which data passed into procedure
• Class of parameter is class of actual argument

\[i_p: type\ class\ \{\ i_p\ \} \]
Output Parameters

• Parameters through which data passed out of procedure
 • If data passed in, called input/output parameter
• As information can flow from input parameters to output parameters, class must include this:

\[o_p: \text{type} \text{ class } \{ r_1, \ldots, r_n \} \]

where \(r_i \) is class of \(i \)th input or input/output argument
Example

```plaintext
proc sum(x: int class { A };
    var out: int class { A, B });
begin
    out := out + x;
end;

• Require \( x \leq out \) and \( out \leq out \)
```
Array Elements

• Information flowing out:
 \[... := a[i] \]
 Value of \(i \), \(a[i] \) both affect result, so class is \(\text{lub}\{a[i], i\} \)

• Information flowing in:
 \[a[i] := ... \]
 Only value of \(a[i] \) affected, so class is \(a[i] \)
Assignment Statements

\[x := y + z; \]

- Information flows from \(y, z \) to \(x \), so this requires \(\text{lub}\{ y, z \} \leq x \)

More generally:

\[y := f(x_1, \ldots, x_n) \]

- the relation \(\text{lub}\{ x_1, \ldots, x_n \} \leq y \) must hold
Compound Statements

\[x := y + z; \quad a := b \times c - x; \]

- First statement: \(\text{lub}\{ y, z \} \leq x \)
- Second statement: \(\text{lub}\{ b, c, x \} \leq a \)
- So, both must hold (i.e., be secure)

More generally:

\[S_1; \: \ldots \: S_n; \]

- Each individual \(S_i \) must be secure
Conditional Statements

if $x + y < z$ then $a := b$ else $d := b * c - x$; end

• Statement executed reveals information about x, y, z, so lub{x, y, z} \leq glb{a, d}

More generally:

if $f(x_1, \ldots, x_n)$ then S_1 else S_2; end

• S_1, S_2 must be secure

• lub{x_1, \ldots, x_n} \leq glb{y | y target of assignment in S_1, S_2}
Iterative Statements

while $i < n$ do begin $a[i] := b[i]; i := i + 1; \$ end

• Same ideas as for “if”, but must terminate

More generally:
while $f(x_1, \ldots, x_n)$ do S;

• Loop must terminate;
• S must be secure
• lub$\{ x_1, \ldots, x_n \} \leq$ glb$\{ y \mid y$ target of assignment in $S \}$
Goto Statements

• No assignments
 • Hence no explicit flows
• Need to detect implicit flows
• Basic block is sequence of statements that have one entry point and one exit point
 • Control in block always flows from entry point to exit point
Example Program

```pascal
proc tm(x: array[1..10][1..10] of integer class {x};
    var y: array[1..10][1..10] of integer class {y});

var i, j: integer class {i};
begin
    b1 i := 1;
    b2 L2: if i > 10 goto L7;
    b3 j := 1;
    b4 L4: if j > 10 then goto L6;
    b5 y[j][i] := x[i][j]; j := j + 1; goto L4;
    b6 L6: i := i + 1; goto L2;
    b7 L7:
end;
```
Flow of Control

\[b_1 \rightarrow b_2 \quad i \leq n \quad i > n \rightarrow b_7 \]

\[b_6 \quad j > n \quad b_3 \]

\[b_4 \quad j \leq n \quad b_5 \]

February 22, 2019

ECS 235B, Foundations of Computer and Information Security
IFDs

• Idea: when two paths out of basic block, implicit flow occurs
 • Because information says *which* path to take

• When paths converge, either:
 • Implicit flow becomes irrelevant; or
 • Implicit flow becomes explicit

• *Immediate forward dominator* of basic block b (written $\text{IFD}(b)$) is first basic block lying on all paths of execution passing through b
IFD Example

• In previous procedure:
 • IFD\((b_1) = b_2 \) one path
 • IFD\((b_2) = b_7 \) \(b_2 \rightarrow b_7 \) or \(b_2 \rightarrow b_3 \rightarrow b_6 \rightarrow b_2 \rightarrow b_7 \)
 • IFD\((b_3) = b_4 \) one path
 • IFD\((b_4) = b_6 \) \(b_4 \rightarrow b_6 \) or \(b_4 \rightarrow b_5 \rightarrow b_6 \)
 • IFD\((b_5) = b_4 \) one path
 • IFD\((b_6) = b_2 \) one path
Requirements

• B_i is set of basic blocks along an execution path from b_i to IFD(b_i)
 • Analogous to statements in conditional statement
• $x_{i1}, ..., x_{in}$ variables in expression selecting which execution path containing basic blocks in B_i used
 • Analogous to conditional expression
• Requirements for secure:
 • All statements in each basic blocks are secure
 • $\text{lub}\{x_{i1}, ..., x_{in}\} \leq \text{glb}\{y | y \text{ target of assignment in } B_i\}$
Example of Requirements

• Within each basic block:

 \(b_1: \text{Low} \leq i \)
 \(b_3: \text{Low} \leq j \)
 \(b_6: \text{lub}\{ \text{Low}, j \} \leq i \)

 \(b_5: \text{lub}\{ x[i][j], i, j \} \leq y[j][i] \}; \text{lub}\{ \text{Low}, i \} \leq i \)

• Combining, \(\text{lub}\{ x[i][j], i, j \} \leq y[j][i] \}

• From declarations, true when \(\text{lub}\{ x, i \} \leq y \)

• \(B_2 = \{ b_3, b_4, b_5, b_6 \} \)

 • Assignments to \(i, j, y[j][i] \); conditional is \(i \leq 10 \)

 • Requires \(i \leq \text{glb}\{ i, j, y[j][i] \} \)

 • From declarations, true when \(i \leq y \)
Example (continued)

- $B_4 = \{ b_5 \}$
 - Assignments to j, $y[j][i]$; conditional is $j \leq 10$
 - Requires $j \leq \text{glb}\{ j, y[j][i] \}$
 - From declarations, means $i \leq y$

- Result:
 - Combine $\text{lub}\{ x, i \} \leq y; i \leq y; i \leq y$
 - Requirement is $\text{lub}\{ x, i \} \leq y$
Procedure Calls

\(\text{tm}(a, b); \)

From previous slides, to be secure, \(\text{lub}\{x, i\} \leq y \) must hold

• In call, \(x \) corresponds to \(a \), \(y \) to \(b \)
• Means that \(\text{lub}\{a, i\} \leq b \), or \(a \leq b \)

More generally:

\[
\text{proc } \text{pn}(i_1, \ldots, i_m: \text{int}; \ \text{var } o_1, \ldots, o_n: \text{int}); \ \text{begin } S \ \text{end};
\]

• \(S \) must be secure
• For all \(j \) and \(k \), if \(i_j \leq o_k \), then \(x_j \leq y_k \)
• For all \(j \) and \(k \), if \(o_j \leq o_k \), then \(y_j \leq y_k \)
Exceptions

```plaintext
proc copy(x: integer class { x });
    var y: integer class Low;

var sum: integer class { x };
    z: int class Low;

begin
    y := z := sum := 0;
    while z = 0 do begin
        sum := sum + x;
        y := y + 1;
    end
end
```
Exceptions (cont)

• When sum overflows, integer overflow trap
 • Procedure exits
 • Value of x is MAXINT/y
 • Information flows from y to x, but $x \leq y$ never checked

• Need to handle exceptions explicitly
 • Idea: on integer overflow, terminate loop

    ```
    on integer_overflow_exception sum do z := 1;
    ```

 • Now information flows from sum to z, meaning $sum \leq z$
 • This is false ($sum = \{x\}$ dominates $z = \text{Low}$)