ECS 235B, Lecture 25

March 11, 2019
Model

• System as state machine
 • Subjects $S = \{ s_i \}$
 • States $\Sigma = \{ \sigma_i \}$
 • Outputs $O = \{ o_i \}$
 • Commands $Z = \{ z_i \}$
 • State transition commands $C = S \times Z$

• Note: no inputs
 • Encode either as selection of commands or in state transition commands
Functions

• State transition function $T: C \times \Sigma \rightarrow \Sigma$
 • Describes effect of executing command c in state σ

• Output function $P: C \times \Sigma \rightarrow O$
 • Output of machine when executing command c in state σ

• Initial state is σ_0
Example: 2-Bit Machine

• Users Heidi (high), Lucy (low)

• 2 bits of state, H (high) and L (low)
 • System state is (H, L) where H, L are 0, 1

• 2 commands: $xor0$, $xor1$ do xor with 0, 1
 • Operations affect both state bits regardless of whether Heidi or Lucy issues it
Example: 2-bit Machine

• \(S = \{ \text{Heidi, Lucy} \} \)
• \(\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \} \)
• \(C = \{ \text{xor0, xor1} \} \)

<table>
<thead>
<tr>
<th>Input States ((H, L))</th>
<th>xor0</th>
<th>xor1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(1,1)</td>
</tr>
<tr>
<td>(0,1)</td>
<td>(0,1)</td>
<td>(1,0)</td>
</tr>
<tr>
<td>(1,0)</td>
<td>(1,0)</td>
<td>(0,1)</td>
</tr>
<tr>
<td>(1,1)</td>
<td>(1,1)</td>
<td>(0,0)</td>
</tr>
</tbody>
</table>
Outputs and States

• T is inductive in first argument, as

 \[T(c_0, \sigma_0) = \sigma_1; \ T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i)) \]

• Let C^* be set of possible sequences of commands in C

• $T^*: C^* \times \Sigma \rightarrow \Sigma$ and

 \[c_s = c_0...c_n \Rightarrow T^*(c_s, \sigma_i) = T(c_n, ..., T(c_0, \sigma_i)...) \]

• P similar; define $P^*: C^* \times \Sigma \rightarrow O$ similarly
Projection

• $T^*(c_s, \sigma_i)$ sequence of state transitions
• $P^*(c_s, \sigma_i)$ corresponding outputs
• $proj(s, c_s, \sigma_i)$ set of outputs in $P^*(c_s, \sigma_i)$ that subject s authorized to see
 • In same order as they occur in $P^*(c_s, \sigma_i)$
 • Projection of outputs for s
• Intuition: list of outputs after removing outputs that s cannot see
Purge

- $G \subseteq S$, G a group of subjects
- $A \subseteq Z$, A a set of commands
- $\pi_G(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ deleted
- $\pi_A(c_s)$ subsequence of c_s with all elements (s,z), $z \in A$ deleted
- $\pi_{G,A}(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ and $z \in A$ deleted
Example: 2-bit Machine

• Let $\sigma_0 = (0,1)$
• 3 commands applied:
 • Heidi applies $xor0$
 • Lucy applies $xor1$
 • Heidi applies $xor1$
• $c_s = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor1))$
• Output is 011001
 • Shorthand for sequence (0,1) (1,0) (0,1)
Example

• $\text{proj}(\text{Heidi}, c_s, \sigma_0) = 011001$
• $\text{proj}(\text{Lucy}, c_s, \sigma_0) = 101$
• $\pi_{\text{Lucy}}(c_s) = (\text{Heidi, xor}0), (\text{Heidi, xor}1)$
• $\pi_{\text{Lucy,xor}1}(c_s) = (\text{Heidi, xor}0), (\text{Heidi, xor}1)$
• $\pi_{\text{Heidi}}(c_s) = (\text{Lucy, xor}1)$
• $\pi_{\text{Lucy,xor}0}(c_s) = (\text{Heidi, xor}0), (\text{Lucy, xor}1), (\text{Heidi, xor}1)$
• $\pi_{\text{Heidi,xor}0}(c_s) = \pi_{\text{xor}0}(c_s) = (\text{Lucy, xor}1), (\text{Heidi, xor}1)$
• $\pi_{\text{Heidi,xor}1}(c_s) = (\text{Heidi, xor}0), (\text{Lucy, xor}1)$
• $\pi_{\text{xor}1}(c_s) = (\text{Heidi, xor}0)$
Noninterference

• Intuition: If set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference

• Formally: \(G, G' \subseteq S, G \neq G' \); \(A \subseteq Z \); users in \(G \) executing commands in \(A \) are noninterfering with users in \(G' \) iff for all \(c_s \in C^* \), and for all \(s \in G' \),

\[
\text{proj}(s, c_s, \sigma_i) = \text{proj}(s, \pi_{G,A}(c_s), \sigma_i)
\]

• Written \(A,G : | G' \)
Example: 2-Bit Machine

- Let $c_s = (\text{Heidi, xor0}), (\text{Lucy, xor1}), (\text{Heidi, xor1})$ and $\sigma_0 = (0, 1)$
 - As before
- Take $G = \{\text{Heidi}\}, G' = \{\text{Lucy}\}, A = \emptyset$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy, xor1})$
 - So $\text{proj}(\text{Lucy, } \pi_{\text{Heidi}}(c_s), \sigma_0) = 0$
- $\text{proj}(\text{Lucy, } c_s, \sigma_0) = 101$
- So $\{\text{Heidi}\} :|\{\text{Lucy}\}$ is false
 - Makes sense; commands issued to change H bit also affect L bit
Example

- Same as before, but Heidi’s commands affect H bit only, Lucy’s the L bit only
- Output is $0_H0_L1_H$
- $\pi_{Heidi}(c_s) = (Lucy, \text{ xor1})$
 - So $\text{proj}(Lucy, \pi_{Heidi}(c_s), \sigma_0) = 0$
- $\text{proj}(Lucy, c_s, \sigma_0) = 0$
- So $\{Heidi\} :| \{Lucy\}$ is true
 - Makes sense; commands issued to change H bit now do not affect L bit
Security Policy

- Partitions systems into authorized, unauthorized states
- Authorized states have no forbidden interferences
- Hence a security policy is a set of noninterference assertions
 - See previous definition
Alternative Development

• System X is a set of protection domains $D = \{ d_1, \ldots, d_n \}$
• When command c executed, it is executed in protection domain $\text{dom}(c)$
• Give alternate versions of definitions shown previously
Security Policy

- $D = \{ d_1, ..., d_n \}$, d_i a protection domain
- $r: D \times D$ a reflexive relation
- Then r defines a security policy
- Intuition: defines how information can flow around a system
 - $d_i \rightarrow d_j$ means info can flow from d_i to d_j
 - $d_i \rightarrow d_i$ as info can flow within a domain
Projection Function

• π' analogue of π, earlier
• Commands, subjects absorbed into protection domains
• $d \in D, c \in C, c_s \in C^*$
• $\pi'_d(\nu) = \nu$
• $\pi'_d(c_s c) = \pi'_d(c_s)c$ if $dom(c) \cap d$
• $\pi'_d(c_s c) = \pi'_d(c_s)$ otherwise
• Intuition: if executing c interferes with d, then c is visible; otherwise, as if c never executed
Noninterference-Secure

• System has set of protection domains D

• System is noninterference-secure with respect to policy r if

\[P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0)) \]

• Intuition: if executing c_s causes the same transitions for subjects in domain d as does its projection with respect to domain d, then no information flows in violation of the policy
Output-Consistency

- $c \in C, \text{dom}(c) \in D$
- $\sim_{\text{dom}(c)}$ equivalence relation on states of system X
- $\sim_{\text{dom}(c)}$ output-consistent if
 \[\sigma_a \sim_{\text{dom}(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b) \]
- Intuition: states are output-consistent if for subjects in $\text{dom}(c)$, projections of outputs for both states after c are the same
Lemma

• Let $T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$ for $c \in C$

• If \sim^d output-consistent, then system is noninterference-secure with respect to policy r
Proof

• \(d = \text{dom}(c) \) for \(c \in C \)

• By definition of output-consistent,

\[
T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)
\]

implies

\[
P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))
\]

• This is definition of noninterference-secure with respect to policy \(r \)
Unwinding Theorem

• Links security of sequences of state transition commands to security of individual state transition commands

• Allows you to show a system design is multilevel-secure by showing it matches specs from which certain lemmata derived
 • Says nothing about security of system, because of implementation, operation, etc. issues
Locally Respects

• r is a policy

• System X locally respects r if $\text{dom}(c)$ being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$

• Intuition: when X locally respects r, applying c under policy r to system X has no effect on domain d
Transition-Consistent

• \(r \) policy, \(d \in D \)
• If \(\sigma_a \sim^d \sigma_b \) implies \(T(c, \sigma_a) \sim^d T(c, \sigma_b) \), system \(X \) is \textit{transition-consistent} under \(r \)
• Intuition: command \(c \) does not affect equivalence of states under policy \(r \)
Unwinding Theorem

• Links security of sequences of state transition commands to security of individual state transition commands

• Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived
 • Says nothing about security of system, because of implementation, operation, etc. issues
Locally Respects

• r is a policy
• System X locally respects r if $\text{dom}(c)$ being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
• Intuition: applying c under policy r to system X has no effect on domain d when X locally respects r
Transition-Consistent

• r policy, $d \in D$

• If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X transition-consistent under r

• Intuition: command c does not affect equivalence of states under policy r
Theorem

- r policy, X system that is output consistent, transition consistent, and locally respects r
- Then X noninterference-secure with respect to policy r
- Significance: basis for analyzing systems claiming to enforce noninterference policy
 - Establish conditions of theorem for particular set of commands, states with respect to some policy, set of protection domains
 - Noninterference security with respect to r follows
Proof

• Must show $\sigma_a \sim^d \sigma_b$ implies

$$T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b)$$

• Induct on length of c_s

• Basis: $c_s = \nu$, so $T^*(c_s, \sigma_a) = \sigma_a$; $\pi'_d(\nu) = \nu$; claim holds

• Hypothesis: $c_s = c_1 \ldots c_n$; then claim holds
Induction Step

• Consider $c_s c_{n+1}$. Assume $\sigma_a \sim^d \sigma_b$ and look at $T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$

• 2 cases:
 • $\text{dom}(c_{n+1})rd$ holds
 • $\text{dom}(c_{n+1})rd$ does not hold
dom(\(c_{n+1}\))rd Holds

\[T^*(\pi'_d(c_sc_{n+1}), \sigma_b) = T^*(\pi'_d(c_{n+1}), \sigma_b) = T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b)) \]

• By definition of \(T^*\) and \(\pi'_d\)

\[\sigma_a \sim^d \sigma_b \Rightarrow T(c_{n+1}, \sigma_a) \sim^d T(c_{n+1}, \sigma_b) \]

• As X transition-consistent

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b)) \]

• By transition-consistency and IH

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(\pi'_d(c_sc_{n+1}), \sigma_b) \]

• By substitution from earlier equality

\[T^*(c_sc_{n+1}, \sigma_a) \sim^d T^*(\pi'_d(c_sc_{n+1}), \sigma_b) \]

• By definition of \(T^*\)

proving hypothesis
dom(c_{n+1})rd Does Not Hold

T^*(\pi'_d(c_{s}c_{n+1}), \sigma_b) = T^*(\pi'_d(c_{s}), \sigma_b)

- By definition of \pi'_d

T^*(c_{s}, \sigma_a) = T^*(\pi'_d(c_{s}c_{n+1}), \sigma_b)

- By above and IH

T(c_{n+1}, T^*(c_{s}, \sigma_a)) \sim^d T^*(c_{s}, \sigma_a)

- As X locally respects r, \sigma \sim^d T(c_{n+1}, \sigma) for any \sigma

T(c_{n+1}, T^*(c_{s}, \sigma_a)) \sim^d T^*(\pi'_d(c_{s}c_{n+1}), \sigma_b)

- Substituting back

proving hypothesis
Finishing Proof

• Take $\sigma_a = \sigma_b = \sigma_0$, so from claim proved by induction,

$$T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$$

• By previous lemma, as X (and so \sim^d) output consistent, then X is noninterference-secure with respect to policy r
Access Control Matrix

• Example of interpretation
• Given: access control information
• Question: are given conditions enough to provide noninterference security?
• Assume: system in a particular state
 • Encapsulates values in ACM
ACM Model

• Objects $L = \{ l_1, \ldots, l_m \}$
 • Locations in memory
• Values $V = \{ v_1, \ldots, v_n \}$
 • Values that L can assume
• Set of states $\Sigma = \{ \sigma_1, \ldots, \sigma_k \}$
• Set of protection domains $D = \{ d_1, \ldots, d_j \}$
Functions

• **value**: $L \times \Sigma \rightarrow V$
 • returns value v stored in location l when system in state σ

• **read**: $D \rightarrow 2^V$
 • returns set of objects observable from domain d

• **write**: $D \rightarrow 2^V$
 • returns set of objects observable from domain d
Interpretation of ACM

• Functions represent ACM
 • Subject s in domain d, object o
 • $r \in A[s, o]$ if $o \in read(d)$
 • $w \in A[s, o]$ if $o \in write(d)$

• Equivalence relation:
 $$[\sigma_a \sim_{dom(c)} \sigma_b] \iff [\forall l_i \in read(d) \ [\ \text{value}(l_i, \sigma_a) = \text{value}(l_i, \sigma_b) \]]$$
 • You can read the *exactly* the same locations in both states
Enforcing Policy r

• 5 requirements
 • 3 general ones describing dependence of commands on rights over input and output
 • Hold for all ACMs and policies
 • 2 that are specific to some security policies
 • Hold for most policies
Enforcing Policy \(r \): General Requirements

- Output of command \(c \) executed in domain \(\text{dom}(c) \) depends only on values for which subjects in \(\text{dom}(c) \) have read access
 - \(\sigma_a \sim^{\text{dom}(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b) \)
- If \(c \) changes \(l_i \), then \(c \) can only use values of objects in \(\text{read}(\text{dom}(c)) \) to determine new value
 - \([\sigma_a \sim^{\text{dom}(c)} \sigma_b \land \) \((\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a) \lor \text{value}(l_i, T(c, \sigma_b)) \neq \text{value}(l_i, \sigma_b))] \Rightarrow \) \(\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b)) \)
- If \(c \) changes \(l_i \), then \(\text{dom}(c) \) provides subject executing \(c \) with write access to \(l_i \)
 - \(\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a) \Rightarrow l_i \in \text{write}(\text{dom}(c)) \)
Enforcing Policies \(r \): Specific to Policy

• If domain \(u \) can interfere with domain \(v \), then every object that can be read in \(u \) can also be read in \(v \); so if object \(o \) cannot be read in \(u \), but can be read in \(v \) and object \(o' \) in \(u \) can be read in \(v \), then info flows from \(o \) to \(o' \), then to \(v \)

\[
\begin{align*}
\left[u, v \in D \land urv \right] & \Rightarrow \text{read}(u) \subseteq \text{read}(v) \\
\end{align*}
\]

• Subject \(s \) can write object \(o \) in \(v \), subject \(s' \) can read \(o \) in \(u \), then domain \(v \) can interfere with domain \(u \)

\[
\begin{align*}
\left[l_i \in \text{read}(u) \land l_i \in \text{write}(v) \right] & \Rightarrow vru
\end{align*}
\]
Theorem

• Let X be a system satisfying these five conditions. Then X is noninterference-secure with respect to r
• Proof: must show X output-consistent, locally respects r, transition-consistent
 • Then by unwinding theorem, this theorem holds
Output-Consistent

• Take equivalence relation to be \sim^d, first condition is definition of output-consistent
Locally Respects r

- Proof by contradiction: assume $(\text{dom}(c), d) \notin r$ but $\sigma_a \sim^d T(c, \sigma_a)$ does not hold
- Some object has value changed by c:
 \[\exists l_i \in \text{read}(d) \mid \text{value}(l_i, \sigma_a) \neq \text{value}(l_i, T(c, \sigma_a)) \]
- Condition 3: $l_i \in \text{write}(d)$
- Condition 5: $\text{dom}(c) \not\in \text{rd}$, contradiction
- So $\sigma_a \sim^d T(c, \sigma_a)$ holds, meaning X locally respects r
Transition Consistency

• Assume $\sigma_a \sim^d \sigma_b$

• Must show $\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b))$ for $l_i \in \text{read}(d)$

• 3 cases dealing with change that c makes in l_i in states σ_a, σ_b
 • $\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a)$
 • $\text{value}(l_i, T(c, \sigma_b)) \neq \text{value}(l_i, \sigma_b)$
 • Neither of the above two hold
Case 1: $\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a)$

- **Condition 3:** $l_i \in \text{write}(\text{dom}(c))$
- **As** $l_i \in \text{read}(d)$, **condition 5** says $\text{dom}(c)\text{rd}$
- **Condition 4:** $\text{read}(\text{dom}(c)) \subseteq \text{read}(d)$
 - **As** $\sigma_a \sim^d \sigma_b$, $\sigma_a \sim^{\text{dom}(c)} \sigma_b$
- **Condition 2:** $\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b))$
- **So** $T(c, \sigma_a) \sim^{\text{dom}(c)} T(c, \sigma_b)$, as desired
Case 2: \(\text{value}(l_i, T(c, \sigma_b)) \neq \text{value}(l_i, \sigma_b) \)

- Condition 3: \(l_i \in \text{write}(\text{dom}(c)) \)
- As \(l_i \in \text{read}(d) \), condition 5 says \(\text{dom}(c) \cap \text{read}(d) \)
- Condition 4: \(\text{read}(\text{dom}(c)) \subseteq \text{read}(d) \)
- As \(\sigma_a \sim^d \sigma_b, \sigma_a \sim^{\text{dom}(c)} \sigma_b \)
- Condition 2: \(\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b)) \)
- So \(T(c, \sigma_a) \sim^{\text{dom}(c)} T(c, \sigma_b) \), as desired
Case 3: Neither of the Previous Two Hold

• This means the two conditions below hold:
 • $value(l_i, T(c, \sigma_a)) = value(l_i, \sigma_a)$
 • $value(l_i, T(c, \sigma_b)) = value(l_i, \sigma_b)$

• Interpretation of $\sigma_a \sim^d \sigma_b$ is:
 \[
 \text{for } l_i \in \text{read}(d), \ value(l_i, \sigma_a) = value(l_i, \sigma_b)
 \]

• So $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, as desired

In all 3 cases, X transition-consistent
Policies Changing Over Time

• Problem: previous analysis assumes static system
 • In real life, ACM changes as system commands issued
• Example: $w \in C^*$ leads to current state
 • $\text{cando}(w, s, z)$ holds if s can execute z in current state
 • Condition noninterference on cando
 • If $\neg\text{cando}(w, \text{Lara, “write } f\text{”})$, Lara can’t interfere with any other user by writing file f
Generalize Noninterference

- $G \subseteq S$ set of subjects, $A \subseteq Z$ set of commands, p predicate over elements of C^*
- $c_s = (c_1, \ldots, c_n) \in C^*$
- $\pi''(v) = v$
- $\pi'''((c_1, \ldots, c_n)) = (c_1', \ldots, c_n')$, where
 - $c_i' = v$ if $p(c_1', \ldots, c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
 - $c_i' = c_i$ otherwise
Intuition

• $\pi''(c_s) = c_s$

• But if p holds, and element of c_s involves both command in A and subject in G, replace corresponding element of c_s with empty command ν
 • Just like deleting entries from c_s as $\pi_{A,G}$ does earlier
Noninterference

- $G, G' \subseteq S$ sets of subjects, $A \subseteq Z$ set of commands, p predicate over C^*
- Users in G executing commands in A are noninterfering with users in G' under condition p iff, for all $c_s \in C^*$ and for all $s \in G'$, $\text{proj}(s, c_s, \sigma_i) = \text{proj}(s, \pi''(c_s), \sigma_i)$
 - Written $A, G : | G'$ if p
Example

• From earlier one, simple security policy based on noninterference:

\[\forall (s \in S) \forall (z \in Z) [\{z\}, \{s\} :| S \textbf{ if } \neg \textit{cando}(w, s, z)] \]

• If subject can’t execute command (the \(\neg \textit{cando}\) part) in any state, subject can’t use that command to interfere with another subject
Another Example

• Consider system in which rights can be passed
 • $\text{pass}(s, z)$ gives s right to execute z
 • $w_n = v_1, ..., v_n$ sequence of $v_i \in C^*$
 • $\text{prev}(w_n) = w_{n-1}$; $\text{last}(w_n) = v_n$
Policy

• No subject s can use z to interfere if, in previous state, s did not have right to z, and no subject gave it to s

\[
\{ z \}, \{ s \} : | S \\
\text{if } [\neg \text{cando}(\text{prev}(w), s, z) \land [\text{cando}(\text{prev}(w), s', \text{pass}(s, z)) \Rightarrow \neg \text{last}(w) = (s', \text{pass}(s, z))]]
\]
Effect

• Suppose $s_1 \in S$ can execute $\text{pass}(s_2, z)$
• For all $w \in C^*$, $\text{cando}(w, s_1, \text{pass}(s_2, z))$ holds
• Initially, $\text{cando}(v, s_2, z)$ false
• Let $z' \in Z$ be such that (s_3, z') noninterfering with (s_2, z)
 • So for each w_n with $v_n = (s_3, z')$, $\text{cando}(w_n, s_2, z) = \text{cando}(w_{n-1}, s_2, z)$
Effect

• Then policy says for all $s \in S$

$$proj(s, ((s_2, z), (s_1, \text{pass}(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i) =$$

$$proj(s, ((s_1, \text{pass}(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i)$$

• So s_2’s first execution of z does not affect any subject’s observation of system