What Homework 1, Problem 3 Asks

Problem Statement

- Justify the statement: "Suppose two subjects s_1 and s_2 are created and the rights in $A[s_1, o_1]$ and $A[s_2, o_2]$ are tested. The same test for $A[s_1, o_1]$ and $A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2]$ will produce the same result."
- Would it be true if one could test for the absence of rights as well as for the presence of rights?

2 create subjects

	01	<i>o</i> ₂	s_1	<i>S</i> ₂
<i>S</i> ₁				
S ₂		r		

```
create subject s_1
create subject s_2
enter r into A[s_2, o_2]
if r in A[s_2, o_2]
then
```

. . .

[[IMPORTANT: these would be in commands]]

1 create subject

```
create subject s_1
enter r into A[s_1, o_2]
if r in A[s_1, o_2]
then
```

. . .

[[IMPORTANT: these would be in commands]]

Problem: prove the result of executing the two command sequences produces the same result

Test for Absence of Rights

- Current access control matrix model allows conditional tests of the form if r in A[s,o] but **not** if r not in A[s,o]
- The problem asks, what if **both** are allowed? Would the two command sequences still produce the same results?