ECS 235B Module 11
Sharing in the Take-Grant Model
can•share Predicate

Definition:

- $\text{can•share}(r, x, y, G_0)$ if, and only if, there is a sequence of protection graphs G_0, \ldots, G_n such that $G_0 \vdash^* G_n$ using only de jure rules and in G_n there is an edge from x to y labeled r.
can\(\cdot\)share Theorem

- \(can\cdot share(r, x, y, G_0)\) if, and only if, there is an edge from \(x\) to \(y\) labeled \(r\) in \(G_0\), or the following hold simultaneously:
 - There is an \(s\) in \(G_0\) with an \(s\)-to-\(y\) edge labeled \(r\)
 - There is a subject \(x' = x\) or initially spans to \(x\)
 - There is a subject \(s' = s\) or terminally spans to \(s\)
 - There are islands \(I_1, \ldots, I_k\) connected by bridges, and \(x'\) in \(I_1\) and \(s'\) in \(I_k\)
Outline of Proof

• \(s \) has \(r \) rights over \(y \)
• \(s' \) acquires \(r \) rights over \(y \) from \(s \)
 • Definition of terminal span
• \(x' \) acquires \(r \) rights over \(y \) from \(s' \)
 • Repeated application of sharing among vertices in islands, passing rights along bridges
• \(x' \) gives \(r \) rights over \(y \) to \(x \)
 • Definition of initial span
Example Interpretation

• ACM is generic
 • Can be applied in any situation

• Take-Grant has specific rules, rights
 • Can be applied in situations matching rules, rights

• Question: what states can evolve from a system that is modeled using the Take-Grant Model?
Take-Grant Generated Systems

- Theorem: G_0 protection graph with 1 vertex, no edges; R set of rights. Then $G_0 \vdash^* G$ iff:
 - G finite directed graph consisting of subjects, objects, edges
 - Edges labeled from nonempty subsets of R
 - At least one vertex in G has no incoming edges
Outline of Proof

$$\Rightarrow$$: By construction; G final graph in theorem
- Let x_1, \ldots, x_n be subjects in G
- Let x_1 have no incoming edges

- Now construct G' as follows:
 1. Do "x_1 creates ($\alpha \cup \{ g \}$ to) new subject x_i"
 2. For all (x_i, x_j) where x_i has a rights over x_j, do
 "x_1 grants (α to x_j) to x_i"
 3. Let β be rights x_i has over x_j in G. Do
 "x_1 removes (($\alpha \cup \{ g \} - \beta$) to) x_j"

- Now G' is desired G
Outline of Proof

\(\iff: \text{Let } \mathbf{v} \text{ be initial subject, and } G_0 \vdash \star G\)

- Inspection of rules gives:
 - \(G\) is finite
 - \(G\) is a directed graph
 - Subjects and objects only
 - All edges labeled with nonempty subsets of \(R\)

- Limits of rules:
 - None allow vertices to be deleted so \(\mathbf{v}\) in \(G\)
 - None add incoming edges to vertices without incoming edges, so \(\mathbf{v}\) has no incoming edges
Example: Shared Buffer

- Goal: \(p, q \) to communicate through shared buffer \(b \) controlled by trusted entity \(s \)
 1. \(s \) creates \(\{ r, w \} \) to new object \(b \)
 2. \(s \) grants \(\{ r, w \} \) to \(b \) to \(p \)
 3. \(s \) grants \(\{ r, w \} \) to \(b \) to \(q \)
Quiz

In either 1 or 2 or both, can x obtain r rights over y?

1. $y \overset{t}{\rightarrow} v \overset{g}{\rightarrow} w \overset{\alpha}{\rightarrow} x$

2. $y \overset{t}{\rightarrow} v \overset{g}{\rightarrow} w \overset{\alpha}{\rightarrow} x$