January 11, 2021 Outline

Assignments: Homework \#1, due January 22
Project selection, due January 22

1. Take-Grant Protection Model
(a) Counterpoint to HRU result
(b) Symmetry of take and grant rights
(c) Islands (maximal subject-only $t g$-connected subgraphs)
(d) Bridges (as a combination of terminal and initial spans)
2. Sharing
(a) Definition: can $\bullet \operatorname{share}\left(\alpha, \mathbf{x}, \mathbf{y}, G_{0}\right)$ true iff there exists a sequence of protection graphs G_{0}, \ldots, G_{n} such that $G_{0} \vdash^{*} G_{n}$ using only take, grant, create, remove rules and in G_{n}, there is an edge from \mathbf{x} to \mathbf{y} labeled α
(b) Theorem: can $\bullet \operatorname{share}\left(r, \mathbf{x}, \mathbf{y}, G_{0}\right)$ iff there is an edge from \mathbf{x} to \mathbf{y} labeled r in G_{0}, or all of the following hold:
i. there is a vertex \mathbf{y}^{\prime} with an edge from \mathbf{y}^{\prime} to \mathbf{y} labeled r;
ii. there is a subject $\mathbf{y}^{\prime \prime}$ which terminally spans to \mathbf{y}^{\prime}, or $\mathbf{y}^{\prime \prime}=\mathbf{y}^{\prime}$;
iii. there is a subject \mathbf{x}^{\prime} which initially spans to \mathbf{x}, or $\mathbf{x}^{\prime}=\mathbf{x}$; and
iv. there is a sequence of islands I_{1}, \ldots, I_{n} connected by bridges for which $\mathbf{x}^{\prime} \in I_{1}$ and $\mathbf{y}^{\prime} \in I_{n}$.
3. Model Interpretation
(a) ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
(b) Example: shared buffer managed by trusted third party
4. Stealing
(a) Definition: can \bullet steal $\left(\alpha, \mathbf{x}, \mathbf{y}, G_{0}\right)$ true iff there exists a sequence of protection graphs G_{0}, \ldots, G_{n} for which the following hold simultaneously:
i. there is an edge from \mathbf{x} and \mathbf{y} labeled α in G_{n};
ii. there is a sequence of rule applications ρ_{1} such that $G_{i-1} \vdash G_{i}$ using ρ_{i}; and
iii. for all vertices \mathbf{v} and \mathbf{w} in $G_{i-1}, 1 \leq i<n$, if there is an edge from \mathbf{v} to \mathbf{y} labeled α, then ρ_{i} is not of the form " \mathbf{v} grants (α to \mathbf{y}) to \mathbf{w} ".
(b) Theorem: can \bullet steal $\left(\alpha, \mathbf{x}, \mathbf{y}, G_{0}\right)$ iff there is an edge from \mathbf{x} to \mathbf{y} labeled α in G_{0}, or all of the following hold:
i. there is no edge from \mathbf{x} and \mathbf{y} labeled α in G_{0};
ii. there exists a subject \mathbf{x}^{\prime} such that $\mathbf{x}^{\prime}=\mathbf{x}$ or \mathbf{x}^{\prime} initially spans to \mathbf{x};
iii. there exists a vertex \mathbf{s} with an edge labeled α to \mathbf{y} in G_{0}; and
iv. can \bullet share ($t, \mathbf{x}^{\prime}, \mathbf{s}, G_{0}$) holds.
5. Conspiracy
(a) What is of interest?
(b) Access, deletion sets
(c) Conspiracy graph
(d) Number of conspirators
