January 11, 2021 Outline

Reading: *text*, §3.3

Assignments: Homework #1, due January 22

Project selection, due January 22

- 1. Take-Grant Protection Model
 - (a) Counterpoint to HRU result
 - (b) Symmetry of take and grant rights
 - (c) Islands (maximal subject-only *tg*-connected subgraphs)
 - (d) Bridges (as a combination of terminal and initial spans)
- 2. Sharing
 - (a) Definition: $can \bullet share(\alpha, \mathbf{x}, \mathbf{y}, G_0)$ true iff there exists a sequence of protection graphs $G_0, ..., G_n$ such that $G_0 \vdash^* G_n$ using only take, grant, create, remove rules and in G_n , there is an edge from \mathbf{x} to \mathbf{y} labeled α
 - (b) Theorem: $can \bullet share(r, \mathbf{x}, \mathbf{y}, G_0)$ iff there is an edge from \mathbf{x} to \mathbf{y} labeled r in G_0 , or all of the following hold:
 - i. there is a vertex \mathbf{y}' with an edge from \mathbf{y}' to \mathbf{y} labeled r;
 - ii. there is a subject \mathbf{y}'' which terminally spans to \mathbf{y}' , or $\mathbf{y}'' = \mathbf{y}'$;
 - iii. there is a subject \mathbf{x}' which initially spans to \mathbf{x} , or $\mathbf{x}' = \mathbf{x}$; and
 - iv. there is a sequence of islands $I_1, ..., I_n$ connected by bridges for which $\mathbf{x}' \in I_1$ and $\mathbf{y}' \in I_n$.
- 3. Model Interpretation
 - (a) ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
 - (b) Example: shared buffer managed by trusted third party
- 4. Stealing
 - (a) Definition: $can \bullet steal(\alpha, \mathbf{x}, \mathbf{y}, G_0)$ true iff there exists a sequence of protection graphs $G_0, ..., G_n$ for which the following hold simultaneously:
 - i. there is an edge from **x** and **y** labeled α in G_n ;
 - ii. there is a sequence of rule applications ρ_1 such that $G_{i-1} \vdash G_i$ using ρ_i ; and
 - iii. for all vertices **v** and **w** in G_{i-1} , $1 \le i < n$, if there is an edge from **v** to **y** labeled α , then ρ_i is not of the form "**v** grants (α to **y**) to **w**".
 - (b) Theorem: $can \bullet steal(\alpha, \mathbf{x}, \mathbf{y}, G_0)$ iff there is an edge from \mathbf{x} to \mathbf{y} labeled α in G_0 , or all of the following hold:
 - i. there is no edge from **x** and **y** labeled α in G_0 ;
 - ii. there exists a subject \mathbf{x}' such that $\mathbf{x}' = \mathbf{x}$ or \mathbf{x}' initially spans to \mathbf{x} ;
 - iii. there exists a vertex **s** with an edge labeled α to **y** in G_0 ; and
 - iv. $can \bullet share(t, \mathbf{x}', \mathbf{s}, G_0)$ holds.
- 5. Conspiracy
 - (a) What is of interest?
 - (b) Access, deletion sets
 - (c) Conspiracy graph
 - (d) Number of conspirators