ECS 235B Module 15
Precise and Secure Policies
Types of Mechanisms

- secure
- precise
- broad

set of reachable states
set of secure states
Secure, Precise Mechanisms

• Can one devise a procedure for developing a mechanism that is both secure \textit{and} precise?
 • Consider confidentiality policies only here
 • Integrity policies produce same result

• Program a function with multiple inputs and one output
 • Let p be a function $p: I_1 \times \ldots \times I_n \rightarrow R$. Then p is a program with n inputs $i_k \in I_k$, $1 \leq k \leq n$, and one output $r \rightarrow R$
Secure, Precise Mechanisms

• Can one devise a procedure for developing a mechanism that is both secure and precise?
 • Consider confidentiality policies only here
 • Integrity policies produce same result

• Program a function with multiple inputs and one output
 • Let \(p \) be a function \(p: I_1 \times \ldots \times I_n \rightarrow R \). Then \(p \) is a program with \(n \) inputs \(i_k \in I_k \), \(1 \leq k \leq n \), and one output \(r \in R \)
Programs and Postulates

• Observability Postulate: the output of a function encodes all available information about its inputs
 • Covert channels considered part of the output

• Example: authentication function
 • Inputs name, password; output Good or Bad
 • If name invalid, immediately print Bad; else access database
 • Problem: time output of Bad, can determine if name valid
 • This means timing is part of output
Protection Mechanism

• Let p be a function $p: I_1 \times \ldots \times I_n \rightarrow R$. A protection mechanism m is a function

$$m: I_1 \times \ldots \times I_n \rightarrow R \cup E$$

for which, when $i_k \in I_k$, $1 \leq k \leq n$, either

• $m(i_1, \ldots, i_n) = p(i_1, \ldots, i_n)$ or
• $m(i_1, \ldots, i_n) \in E$.

• E is set of error outputs
 • In above example, $E = \{ \text{“Password Database Missing”}, \text{“Password Database Locked”} \}$
Confidentiality Policy

• Confidentiality policy for program p says which inputs can be revealed
 • Formally, for $p: I_1 \times ... \times I_n \rightarrow R$, it is a function $c: I_1 \times ... \times I_n \rightarrow A$, where $A \subseteq I_1 \times ... \times I_n$
 • A is set of inputs available to observer

• Security mechanism is function

 $m: I_1 \times ... \times I_n \rightarrow R \cup E$

 • m is secure if and only if $\exists m': A \rightarrow R \cup E$ such that,

 $\forall i_k \in I_k, 1 \leq k \leq n, m(i_1, ..., i_n) = m'(c(i_1, ..., i_n))$

 • m returns values consistent with c
Examples

- $c(i_1, ..., i_n) = C$, a constant
 - Deny observer any information (output does not vary with inputs)
- $c(i_1, ..., i_n) = (i_1, ..., i_n)$, and $m' = m$
 - Allow observer full access to information
- $c(i_1, ..., i_n) = i_1$
 - Allow observer information about first input but no information about other inputs.
Precision

• Security policy may be over-restrictive
 • Precision measures how over-restrictive

• m_1, m_2 distinct protection mechanisms for program p under policy c
 • m_1 as precise as m_2 ($m_1 \approx m_2$) if, for all inputs i_1, \ldots, i_n

 $$m_2(i_1, \ldots, i_n) = p(i_1, \ldots, i_n) \Rightarrow m_1(i_1, \ldots, i_n) = p(i_1, \ldots, i_n)$$

 • m_1 more precise than m_2 ($m_1 \sim m_2$) if there is an input (i_1', \ldots, i_n') such that

 $$m_1(i_1', \ldots, i_n') = p(i_1', \ldots, i_n') \text{ and } m_2(i_1', \ldots, i_n') \neq p(i_1', \ldots, i_n').$$
Combining Mechanisms

• m_1, m_2 protection mechanisms

• $m_3 = m_1 \cup m_2$
 • For inputs on which m_1 and m_2 return same value as p, m_3 does also; otherwise, m_3 returns same value as m_1

• Theorem: if m_1, m_2 secure, then m_3 secure
 • Also, $m_3 \approx m_1$ and $m_3 \approx m_2$
 • Follows from definitions of secure, precise, and m_3
Existence Theorem

• For any program p and security policy c, there exists a precise, secure mechanism m^* such that, for all secure mechanisms m associated with p and c, $m^* \approx m$
 • Maximally precise mechanism
 • Ensures security
 • Minimizes number of denials of legitimate actions
Lack of Effective Procedure

• There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program.
 • Sketch of proof: let policy \(c \) be constant function, and \(p \) compute function \(T(x) \). Assume \(T(x) = 0 \). Consider program \(q \), where

\[
\begin{align*}
z &= p; \\
\text{if } z &= 0 \text{ then } y := 1 \text{ else } y := 2; \\
\text{halt;}
\end{align*}
\]
Rest of Sketch

• m associated with q, y value of m, z output of p corresponding to $T(x)$
• $\forall x \ [T(x) = 0] \rightarrow m(x) = 1$
• $\exists x' \ [T(x') \neq 0] \rightarrow m(x) = 2$ or $m(x)$ undefined
• If you can determine m, you can determine whether $T(x) = 0$ for all x
• Determines some information about input (is it 0?)
• Contradicts constancy of c.
• Therefore no such procedure exists
Quiz

Which of the following are true?

• A security policy defines a set of states considered secure.
• A security mechanism is precise if it prevents the system from entering any non-secure states.
• A security mechanism is precise if it allows the system to enter non-secure states.
• A security mechanism is precise if it allows the system to enter any secure state and not any non-secure state.