ECS 235B Module 18 Bell-LaPadula Model

Formal Model Definitions

- S subjects, O objects, P rights
 - Defined rights: <u>r</u> read, <u>a</u> write, <u>w</u> read/write, <u>e</u> empty
- *M* set of possible access control matrices
- C set of clearances/classifications, K set of categories, L = C × K set of security levels
- $F = \{ (f_s, f_o, f_c) \}$
 - *f_s(s)* maximum security level of subject *s*
 - *f_c(s)* current security level of subject *s*
 - *f_o(o)* security level of object *o*

More Definitions

- Hierarchy functions $H: O \rightarrow P(O)$
- Requirements
 - 1. $o_i \neq o_j \Longrightarrow h(o_i) \cap h(o_j) = \emptyset$
 - 2. There is no set { o_1 , ..., o_k } $\subseteq O$ such that for i = 1, ..., k, $o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.
- Example
 - Tree hierarchy; take *h*(*o*) to be the set of children of *o*
 - No two objects have any common children (#1)
 - There are no loops in the tree (#2)

States and Requests

- V set of states
 - Each state is (*b*, *m*, *f*, *h*)
 - *b* is like *m*, but excludes rights not allowed by *f*
- *R* set of requests for access
- D set of outcomes
 - <u>y</u> allowed, <u>n</u> not allowed, <u>i</u> illegal, <u>o</u> error
- W set of actions of the system
 - $W \subseteq R \times D \times V \times V$

History

- $X = R^N$ set of sequences of requests
- $Y = D^N$ set of sequences of decisions
- $Z = V^N$ set of sequences of states
- Interpretation
 - At time t ∈ N, system is in state z_{t-1} ∈ V; request x_t ∈ R causes system to make decision y_t ∈ D, transitioning the system into a (possibly new) state z_t ∈ V
- System representation: $\Sigma(R, D, W, z_0) \in X \times Y \times Z$
 - $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_{t-1}, z_t) \in W$ for all t
 - (*x*, *y*, *z*) called an *appearance* of $\Sigma(R, D, W, z_0)$

Example

- $S = \{ s \}, O = \{ o \}, P = \{ \underline{r}, \underline{w} \}$
- *C* = { High, Low }, *K* = { All }
- For every $f \in F$, either $f_c(s) = (\text{High}, \{ All \}) \text{ or } f_c(s) = (Low, \{ All \})$
- Initial State:
 - $b_1 = \{ (s, o, \underline{r}) \}, m_1 \in M$ gives *s* read access over *o*, and for $f_1 \in F, f_{c,1}(s) = (\text{High}, \{AII\}), f_{o,1}(o) = (Low, \{AII\})$
 - Call this state $v_0 = (b_1, m_1, f_1, h_1) \in V$.

First Transition

- Now suppose in state v_0 : $S = \{ s, s' \}$
- Suppose f_{s,1}(s') = (Low, {All}), m₁ ∈ M gives s read access over o and s' write access to o
- As *s*' not written to *o*, *b*₁ = { (*s*, *o*, <u>r</u>) }
- *r*₁: *s*' requests to write to *o*:
 - System decides $d_1 = \underline{y}$ (as m_1 gives it that right, and $f_{s,1}(s') = f_o(o)$
 - New state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, \underline{r}), (s', o, \underline{w}) \}$
 - Here, $x = (r_1), y = (\underline{y}), z = (v_0, v_1)$

Second Transition

- Current state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, \underline{r}), (s', o, \underline{w}) \}$
 - $f_{c,1}(s) = (\text{High}, \{ \text{All} \}), f_{o,1}(o) = (\text{Low}, \{ \text{All} \})$
- *r*₂: *s* requests to write to *o*:
 - System decides $d_2 = \underline{n} (as f_{c,1}(s) dom f_{o,1}(o))$
 - New state $v_2 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, \underline{r}), (s', o, \underline{w}) \}$
 - So, $x = (r_1, r_2), y = (\underline{y}, \underline{n}), z = (v_0, v_1, v_2)$, where $v_2 = v_1$

Basic Security Theorem

- Define action, secure formally
 - Using a bit of foreshadowing for "secure"
- Restate properties formally
 - Simple security condition
 - *-property
 - Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem

Action

- A request and decision that causes the system to move from one state to another
 - Final state may be the same as initial state
- $(r, d, v, v') \in R \times D \times V \times V$ is an *action* of $\Sigma(R, D, W, z_0)$ iff there is an

 $(x, y, z) \in \Sigma(R, D, W, z_0)$ and a $t \in N$ such that $(r, d, v, v') = (x_t, y_t, z_t, z_{t-1})$

- Request r made when system in state v'; decision d moves system into (possibly the same) state v
- Correspondence with (x_t, y_t, z_t, z_{t-1}) makes states, requests, part of a sequence

Simple Security Condition

(s, o, p) ∈ S × O × P satisfies the simple security condition relative to f (written ssc rel f) iff one of the following holds:

1. $p = \underline{e} \text{ or } p = \underline{a}$

- 2. $p = \underline{r} \text{ or } p = \underline{w} \text{ and } f_s(s) \text{ dom } f_o(o)$
- Holds vacuously if rights do not involve reading
- If all elements of *b* satisfy *ssc rel f*, then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition

Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the simple security condition for any secure state z_0 iff for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies
 - Every $(s, o, p) \in b b'$ satisfies ssc rel f
 - Every (*s*, *o*, *p*) ∈ *b* ′ that does not satisfy *ssc rel f* is not in *b*
- Note: "secure" means z₀ satisfies ssc rel f
- First says every (s, o, p) added satisfies ssc rel f; second says any (s, o, p) in b'that does not satisfy ssc rel f is deleted

*-Property

- $b(s: p_1, ..., p_n)$ set of all objects that s has $p_1, ..., p_n$ access to
- State (b, m, f, h) satisfies the *-property iff for each $s \in S$ the following hold:
 - 1. $b(s: \underline{a}) \neq \emptyset \Longrightarrow [\forall o \in b(s: \underline{a}) [f_o(o) dom f_c(s)]]$
 - 2. $b(s: \underline{w}) \neq \emptyset \Longrightarrow [\forall o \in b(s: \underline{w}) [f_o(o) = f_c(s)]]$
 - 3. $b(s: \underline{r}) \neq \emptyset \Longrightarrow [\forall o \in b(s: \underline{r}) [f_c(s) dom f_o(o)]]$
- Idea: for writing, object dominates subject; for reading, subject dominates object

Summary

- If all states satisfy simple security condition, system satisfies simple security condition
- If a subset S' of subjects satisfy *-property, then *-property satisfied relative to S'⊆ S
- Note: tempting to conclude that *-property includes simple security condition, but this is false
 - See condition placed on <u>w</u> right for each

Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies the following for every $s \in S'$
 - Every $(s, o, p) \in b b'$ satisfies the *-property relative to S'
 - Every (s, o, p) ∈ b' that does not satisfy the *-property relative to S' is not in b
- Note: "secure" means z₀ satisfies *-property relative to S'
- First says every (*s*, *o*, *p*) added satisfies the *-property relative to S'; second says any (*s*, *o*, *p*) in *b* 'that does not satisfy the *-property relative to S' is deleted

Discretionary Security Property

- State (b, m, f, h) satisfies the discretionary security property iff, for each (s, o, p) ∈ b, then p ∈ m[s, o]
- Idea: if *s* can read *o*, then it must have rights to do so in the access control matrix *m*
- This is the discretionary access control part of the model
 - The other two properties are the mandatory access control parts of the model

Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the ds-property for any secure state z_0 iff, for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies:
 - Every $(s, o, p) \in b b'$ satisfies the ds-property
 - Every $(s, o, p) \in b'$ that does not satisfy the ds-property is not in b
- Note: "secure" means z₀ satisfies ds-property
- First says every (*s*, *o*, *p*) added satisfies the ds-property; second says any (*s*, *o*, *p*) in *b*' that does not satisfy the *-property is deleted

Secure

- A system is secure iff it satisfies:
 - Simple security condition
 - *-property
 - Discretionary security property
- A state meeting these three properties is also said to be secure

Basic Security Theorem

- $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and W satisfies the conditions for the preceding three theorems
 - The theorems are on the slides titled "Necessary and Sufficient"

Rule

- $\rho: R \times V \rightarrow D \times V$
- Takes a state and a request, returns a decision and a (possibly new) state
- Rule ρ ssc-preserving if for all $(r, v) \in R \times V$ and v satisfying ssc rel f, $\rho(r, v) = (d, v')$ means that v' satisfies ssc rel f'.
 - Similar definitions for *-property, ds-property
 - If rule meets all 3 conditions, it is *security-preserving*

Unambiguous Rule Selection

- Problem: multiple rules may apply to a request in a state
 - if two rules act on a read request in state v ...
- Solution: define relation $W(\omega)$ for a set of rules $\omega = \{ \rho_1, ..., \rho_m \}$ such that a state $(r, d, v, v') \in W(\omega)$ iff either
 - *d* = <u>i;</u> or
 - for exactly one integer j, $\rho_j(r, v) = (d, v')$
- Either request is illegal, or only one rule applies

Rules Preserving SSC

- Let ω be set of *ssc*-preserving rules. Let state z_0 satisfy simple security condition. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies simple security condition Proof: by contradiction.
 - Choose $(x, y, z) \in \Sigma(R, D, W(\omega), z_0)$ as state not satisfying simple security condition; then choose $t \in N$ such that (x_t, y_t, z_t) is first appearance not meeting simple security condition
 - As $(x_t, y_t, z_t, z_{t-1}) \in W(\omega)$, there is unique rule $\rho \in \omega$ such that $\rho(x_t, z_{t-1}) = (y_t, z_t)$ and $y_t \neq \underline{i}$.
 - As ρ ssc-preserving, and z_{t-1} satisfies simple security condition, then z_t meets simple security condition, contradiction.

Adding States Preserving SSC

Let v = (b, m, f, h) satisfy simple security condition. Let (s, o, p) ∉ b, b' = b ∪ { (s, o, p) }, and v' = (b', m, f, h). Then v'satisfies simple security condition iff:

1.Either $p = \underline{e}$ or $p = \underline{a}$; or

2. Either $p = \underline{r}$ or $p = \underline{w}$, and $f_c(s) \operatorname{dom} f_o(o)$

Proof:

- 1. Immediate from definition of simple security condition and v' satisfying ssc rel f
- 2. v' satisfies simple security condition means $f_c(s)$ dom $f_o(o)$, and for converse, $(s, o, p) \in b'$ satisfies ssc rel f, so v' satisfies simple security condition

Rules, States Preserving *-Property

- Let ω be set of *-property-preserving rules, state z_0 satisfies the *property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies *-property
- Let v = (b, m, f, h) satisfy *-property. Let (s, o, p) ∉ b, b' = b ∪ { (s, o, p) }, and v' = (b', m, f, h). Then v' satisfies *-property iff one of the following holds:
 - 1. $p = \underline{a}$ and $f_o(o) dom f_c(s)$
 - 2. $p = \underline{w}$ and $f_c(s) = f_o(o)$
 - 3. $p = \underline{r}$ and $f_c(s) dom f_o(o)$

Rules, States Preserving ds-Property

- Let ω be set of ds-property-preserving rules, state z_0 satisfies dsproperty. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property
- Let v = (b, m, f, h) satisfy ds-property. Let $(s, o, p) \notin b, b' = b \cup \{(s, o, p)\}$, and v' = (b', m, f, h). Then v' satisfies ds-property iff $p \in m[s, o]$.

Combining

- Let ρ be a rule and ρ(r, v) = (d, v'), where v = (b, m, f, h) and v' = (b', m', f', h'). Then:
 - 1. If $b' \subseteq b$, f' = f, and v satisfies the simple security condition, then v' satisfies the simple security condition
 - 2. If $b' \subseteq b$, f' = f, and v satisfies the *-property, then v' satisfies the *-property
 - 3. If $b' \subseteq b$, $m[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and v satisfies the dsproperty, then v' satisfies the ds-property

1. Suppose v satisfies simple security property.

- a) $b' \subseteq b$ and $(s, o, \underline{r}) \in b'$ implies $(s, o, \underline{r}) \in b$
- b) $b' \subseteq b$ and $(s, o, \underline{w}) \in b'$ implies $(s, o, \underline{w}) \in b$
- c) So $f_c(s)$ dom $f_o(o)$
- d) But f' = f
- e) Hence $f'_c(s) \operatorname{dom} f'_o(o)$
- f) So v'satisfies simple security condition
- 2, 3 proved similarly

Example Instantiation: Multics

- 11 rules affect rights:
 - set to request, release access
 - set to give, remove access to different subject
 - set to create, reclassify objects
 - set to remove objects
 - set to change subject security level
- Set of "trusted" subjects $S_T \subseteq S$
 - *-property not enforced; subjects trusted not to violate it
- $\Delta(\rho)$ domain
 - determines if components of request are valid

get-read Rule

- Request *r* = (*get*, *s*, *o*, <u>r</u>)
 - s gets (requests) the right to read o
- Rule is $\rho_1(r, v)$: if $(r \neq \Delta(\rho_1))$ then $\rho_1(r, v) = (\underline{i}, v)$; else if $(f_s(s) \ dom \ f_o(o)$ and $[s \in S_T \ or \ f_c(s) \ dom \ f_o(o)]$ and $\underline{r} \in m[s, o]$) then $\rho_1(r, v) = (y, (b \cup \{ (s, o, \underline{r}) \}, m, f, h))$; else $\rho_1(r, v) = (\underline{n}, v)$;

Security of Rule

• The get-read rule preserves the simple security condition, the *property, and the ds-property

Proof:

• Let v satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If v' = v, result is trivial. So let $v' = (b \cup \{(s_2, o, \underline{r})\}, m, f, h)$.

- Consider the simple security condition.
 - From the choice of v', either $b' b = \emptyset$ or { (s_2, o, \underline{r}) }
 - If b' b = Ø, then { (s₂, o, <u>r</u>) } ∈ b, so v = v', proving that v' satisfies the simple security condition.
 - If b' b = { (s₂, o, <u>r</u>) }, because the get-read rule requires that f_c(s) dom f_o(o), an earlier result says that v' satisfies the simple security condition.

- Consider the *-property.
 - Either $s_2 \in S_T$ or $f_c(s)$ dom $f_o(o)$ from the definition of get-read
 - If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T .
 - If $f_c(s)$ dom $f_o(o)$, an earlier result says that v' satisfies the *-property.

- Consider the discretionary security property.
 - Conditions in the *get-read* rule require <u>r</u> ∈ m[s, o] and either b' − b = Ø or { (s₂, o, <u>r</u>) }
 - If b' b = Ø, then { (s₂, o, <u>r</u>) } ∈ b, so v = v', proving that v' satisfies the simple security condition.
 - If b' b = { (s₂, o, <u>r</u>) }, then { (s₂, o, <u>r</u>) } ∉ b, an earlier result says that v' satisfies the ds-property.

give-read Rule

- Request $r = (s_1, give, s_2, o, \underline{r})$
 - s_1 gives (request to give) s_2 the (discretionary) right to read o
 - Rule: can be done if giver can alter parent of object
 - If object or parent is root of hierarchy, special authorization required
- Useful definitions
 - *root(o*): root object of hierarchy *h* containing *o*
 - parent(o): parent of o in h (so $o \in h(parent(o))$)
 - canallow(s, o, v): s specially authorized to grant access when object or parent of object is root of hierarchy
 - $m \land m[s, o] \leftarrow \underline{r}$: access control matrix m with \underline{r} added to m[s, o]

give-read Rule

```
• Rule is \rho_6(r, v):

if (r \neq \Delta(\rho_6)) then \rho_6(r, v) = (\underline{i}, v);

else if ([o \neq root(o) \text{ and } parent(o) \neq root(o) \text{ and } parent(o) \in b(s_1:\underline{w})] or

[parent(o) = root(o) \text{ and } canallow(s_1, o, v) ] or

[o = root(o) \text{ and } canallow(s_1, o, v) ])

then \rho_6(r, v) = (y, (b, m \land m[s_2, o] \leftarrow \underline{r}, f, h));

else \rho_1(r, v) = (n, v);
```

Security of Rule

- The *give-read* rule preserves the simple security condition, the *- property, and the ds-property
 - Proof: Let v satisfy all conditions. Let ρ₁(r, v) = (d, v'). If v' = v, result is trivial. So let v' = (b, m[s₂, o] ← r, f, h). So b' = b, f' = f, m[x, y] = m'[x, y] for all x ∈ S and y ∈ O such that x ≠ s and y ≠ o, and m[s, o] ⊆ m'[s, o]. Then by earlier result, v'satisfies the simple security condition, the *-property, and the dsproperty.

Quiz

The Multics instantiation of the Bell-LaPadula model defines a set of trusted subjects $S_T \subseteq S$ for which the *-property is not enforced; those subjects are trusted not to violate it. Why do you think this is defined?

- 1. It mimics the set of users on the system being instantiated.
- 2. It is a requirement of every model that there be an exception or way around the constraints imposed by the model, and this is an example of such an exception.
- 3. It is an error and should be removed from the instantiation.