January 25, 2021 Outline

Reading: *text*, §5.2

Assignments: Homework #2, due February 5 Project progress report, due February 12

Module 18

- 1. Bell-LaPadula: formal model
 - (a) Set of requests is R
 - (b) Set of decisions is D
 - (c) $W \subseteq R \times D \times V \times V$ is motion from one state to another.
 - (d) System $\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z$ such that $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_t, z_{t-1}) \in W$ for each $i \in T$; latter is an action of system
 - (e) Theorem: Σ(R,D,W,z₀) satisfies the simple security condition for any initial state z₀ that satisfies the simple security condition iff W satisfies the following conditions for each action (r_i, d_i, (b', m', f', h'), (b, m, f, h)):
 - i. each $(s, o, x) \in b' b$ satisfies the simple security condition relative to f' (i.e., x is not read, or x is read and $f_s(s)dom f_o(o)$); and
 - ii. if $(s, o, x) \in b$ does not satisfy the simple security condition relative to f', then $(s, o, x) \notin b'$
 - (f) Theorem: $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any initial state z_0 that satisfies the *property relative to S' iff W satisfies the following conditions for each $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. for each $s \in S'$, any $(s, o, x) \in b' b$ satisfies the *-property with respect to f'; and
 - ii. for each $s \in S'$, if $(s, o, x) \in b$ does not satisfy the *-property with respect to f', then $(s, o, x) \notin b'$
 - (g) Theorem: $\Sigma(R, D, W, z_0)$ satisfies the ds-property iff the initial state z_0 satisfies the ds-property and W satisfies the following conditions for each $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. if $(s, o, x) \in b' b$, then $x \in m'[s, o]$; and
 - ii. if $(s, o, x) \in b$ and $x \in m'[s, o]$, then $(s, o, x) \notin b'$
 - (h) Basic Security Theorem: A system $\Sigma(R, D, W, z_0)$ is secure iff z_0 is a secure state and W satisfies the conditions of the above three theorems for each action.
- 2. Using the Bell-LaPadula model
 - (a) Define ssc-preserving, *-property-preserving, ds-property-preserving
 - (b) Define relation $W(\omega)$
 - (c) Show conditions under which rules are ssc-preserving, *-property-preserving, ds-property-preserving
 - (d) Show when adding a state preserves those properties
 - (e) Example instantiation: get-read for Multics