ECS 235B Module 34
Introduction to Noninterference
Interference

• Think of it as something used in communication
 • Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects it — communication

• Plays role of writing (interfering) and reading (detecting the interference)
Model

• System as state machine
 • Subjects $S = \{ s_i \}$
 • States $\Sigma = \{ \sigma_i \}$
 • Outputs $O = \{ o_i \}$
 • Commands $Z = \{ z_i \}$
 • State transition commands $C = S \times Z$

• Note: no inputs
 • Encode either as selection of commands or in state transition commands
Functions

• State transition function $T: C \times \Sigma \rightarrow \Sigma$
 • Describes effect of executing command c in state σ

• Output function $P: C \times \Sigma \rightarrow O$
 • Output of machine when executing command c in state σ

• Initial state is σ_0
Example: 2-Bit Machine

• Users Heidi (high), Lucy (low)

• 2 bits of state, \(H\) (high) and \(L\) (low)
 • System state is \((H, L)\) where \(H, L\) are 0, 1

• 2 commands: \(xor0\), \(xor1\) do xor with 0, 1
 • Operations affect both state bits regardless of whether Heidi or Lucy issues it
Example: 2-bit Machine

- $S = \{ \text{Heidi, Lucy} \}$
- $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$
- $C = \{ \text{xor}0, \text{xor}1 \}$

<table>
<thead>
<tr>
<th>Input States (H, L)</th>
<th>(0,0)</th>
<th>(0,1)</th>
<th>(1,0)</th>
<th>(1,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{xor}0$</td>
<td>(0,0)</td>
<td>(0,1)</td>
<td>(1,0)</td>
<td>(1,1)</td>
</tr>
<tr>
<td>$\text{xor}1$</td>
<td>(1,1)</td>
<td>(1,0)</td>
<td>(0,1)</td>
<td>(0,0)</td>
</tr>
</tbody>
</table>
Outsuts and States

• T is inductive in first argument, as
 $$T(c_0, \sigma_0) = \sigma_1; T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i))$$

• Let C^* be set of possible sequences of commands in C

• $T^*: C^* \times \Sigma \rightarrow \Sigma$ and
 $$c_s = c_0...c_n \Rightarrow T^*(c_s, \sigma_i) = T(c_n,..., T(c_0, \sigma_i)...)$$

• P similar; define $P^*: C^* \times \Sigma \rightarrow O$ similarly
Projection

• $T^*(c_s, \sigma_i)$ sequence of state transitions
• $P^*(c_s, \sigma_i)$ corresponding outputs
• $proj(s, c_s, \sigma_i)$ set of outputs in $P^*(c_s, \sigma_i)$ that subject s authorized to see
 • In same order as they occur in $P^*(c_s, \sigma_i)$
 • Projection of outputs for s
• Intuition: list of outputs after removing outputs that s cannot see
Purge

- $G \subseteq S$, G a group of subjects
- $A \subseteq Z$, A a set of commands
- $\pi_G(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ deleted
- $\pi_A(c_s)$ subsequence of c_s with all elements (s,z), $z \in A$ deleted
- $\pi_{G,A}(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ and $z \in A$ deleted
Example: 2-bit Machine

• Let $\sigma_0 = (0,1)$

• 3 commands applied:
 • Heidi applies $xor0$
 • Lucy applies $xor1$
 • Heidi applies $xor1$

• $c_s = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor1))$

• Output is 011001
 • Shorthand for sequence (0,1) (1,0) (0,1)
Example

- $\text{proj}(\text{Heidi}, c_s, \sigma_0) = 011001$
- $\text{proj}(\text{Lucy}, c_s, \sigma_0) = 101$
- $\pi_{\text{Lucy}}(c_s) = (\text{Heidi}, \text{xor0}), (\text{Heidi}, \text{xor1})$
- $\pi_{\text{Lucy,xor1}}(c_s) = (\text{Heidi}, \text{xor0}), (\text{Heidi}, \text{xor1})$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, \text{xor1})$
- $\pi_{\text{Lucy,xor0}}(c_s) = (\text{Heidi}, \text{xor0}), (\text{Lucy}, \text{xor1}), (\text{Heidi}, \text{xor1})$
- $\pi_{\text{Heidi,xor0}}(c_s) = \pi_{\text{xor0}}(c_s) = (\text{Lucy}, \text{xor1}), (\text{Heidi}, \text{xor1})$
- $\pi_{\text{Heidi,xor1}}(c_s) = (\text{Heidi}, \text{xor0}), (\text{Lucy}, \text{xor1})$
- $\pi_{\text{xor1}}(c_s) = (\text{Heidi}, \text{xor0})$
Noninterference

• Intuition: If set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference

• Formally: \(G, G' \subseteq S, G \neq G'; A \subseteq Z; \) users in \(G \) executing commands in \(A \) are noninterfering with users in \(G' \) iff for all \(c_s \in C^* \), and for all \(s \in G' \),

\[
\text{proj}(s, c_s, \sigma_i) = \text{proj}(s, \pi_{G,A}(c_s), \sigma_i)
\]

• Written \(A, G : | G' \)
Example: 2-Bit Machine

• Let $c_s = ((\text{Heidi}, \text{xor0}), (\text{Lucy}, \text{xor1}), (\text{Heidi}, \text{xor1}))$ and $\sigma_0 = (0, 1)$
 • As before
• Take $G = \{ \text{Heidi} \}, G’ = \{ \text{Lucy} \}, A = \emptyset$
• $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, \text{xor1})$
 • So $\text{proj}(\text{Lucy}, \pi_{\text{Heidi}}(c_s), \sigma_0) = 0$
• $\text{proj}(\text{Lucy}, c_s, \sigma_0) = 101$
• So $\{ \text{Heidi} \} : | \{ \text{Lucy} \}$ is false
 • Makes sense; commands issued to change H bit also affect L bit
Example

• Same as before, but Heidi’s commands affect H bit only, Lucy’s the L bit only

• Output is $0_H0_L1_H$

• $\pi_{Heidi}(c_s) = (Lucy, \text{xor1})$
 • So $proj(Lucy, \pi_{Heidi}(c_s), \sigma_0) = 0$

• $proj(Lucy, c_s, \sigma_0) = 0$

• So $\{Heidi\} :|\{Lucy\}$ is true
 • Makes sense; commands issued to change H bit now do not affect L bit
Quiz

Which of the following best describes noninterference *informally*?

1. Someone operating at LOW cannot see HIGH outputs
2. Someone operating at HIGH cannot see LOW outputs
3. When the LOW inputs are the same, the LOW outputs are the same regardless of the HIGH inputs and outputs
4. When the LOW inputs are the same, different HIGH inputs and outputs will affect the LOW outputs