ECS 235B Module 39 Nondeducibility

Nondeducibility

- Noninterference: do state transitions caused by high level commands interfere with sequences of state transitions caused by low level commands?
- Really case about inputs and outputs:
 - Can low level subject deduce *anything* about high level outputs from a set of low level outputs?

Example: 2-Bit System

- High operations change only High bit
 - Similar for Low
- $\sigma_0 = (0, 0)$
- Sequence of commands:
 - (Heidi, xor1), (Lara, xor0), (Lara, xor1), (Lara, xor0), (Heidi, xor1), (Lara, xor0)
 - Both bits output after each command
- Output is: 00101011110101

Security

- Not noninterference-secure w.r.t. Lara
 - Lara sees output as 0001111
 - Delete High outputs and she sees 00111
- But Lara still cannot deduce the commands deleted
 - Don't affect values; only lengths
- So it is deducibly secure
 - Lara can't deduce the commands Heidi gave

Event System

- 4-tuple (*E*, *I*, *O*, *T*)
 - E set of events
 - $I \subseteq E$ set of input events
 - $O \subseteq E$ set of output events
 - T set of all finite sequences of events legal within system
- E partitioned into H, L
 - *H* set of *High* events
 - L set of Low events

More Events ...

- $H \cap I$ set of *High* inputs
- $H \cap O$ set of *High* outputs
- $L \cap I$ set of *Low* inputs
- $L \cap O$ set of *Low* outputs
- T_{Low} set of all possible sequences of Low events that are legal within system
- $\pi_L: T \to T_{Low}$ projection function deleting all *High* inputs from trace
 - Low observer should not be able to deduce anything about High inputs from trace $t_{low} \in T_{low}$

Deducibly Secure

- System deducibly secure if for all traces $t_{Low} \in T_{Low}$, the corresponding set of high level traces contains every possible trace $t \in T$ for which $\pi_L(t) = t_{Low}$
 - Given any t_{Low} , the trace $t \in T$ producing that t_{Low} is equally likely to be any trace with $\pi_I(t) = t_{Iow}$

Example: 2-Bit Machine

- Let xor0, xor1 apply to both bits, and both bits output after each command
- Initial state: (0, 1)
- Inputs: $1_H 0_L 1_L 0_H 1_L 0_L$
- Outputs: 10 10 01 01 10 10
- Lara (at *Low*) sees: 001100
 - Does not know initial state, so does not know first input; but can deduce fourth input is 0
- Not deducibly secure

Example: 2-Bit Machine

- Now xor0, xor1 apply only to state bit with same level as user
- Inputs: $1_H 0_L 1_L 0_H 1_L 0_L$
- Outputs: 1011111011
- Lara sees: 01101
- She cannot deduce anything about input
 - Could be $0_H 0_L 1_L 0_H 1_L 0_L$ or $0_L 1_H 1_L 0_H 1_L 0_L$ for example
- Deducibly secure

Security of Composition

- In general: deducibly secure systems not composable
- Strong noninterference: deducible security + requirement that no High output occurs unless caused by a High input
 - Systems meeting this property are composable

Example

- 2-bit machine done earlier does not exhibit strong noninterference
 - Because it puts out *High* bit even when there is no *High* input
- Modify machine to output only state bit at level of latest input
 - *Now* it exhibits strong noninterference

Problem

- Too restrictive; it bans some systems that are *obviously* secure
- Example: System *upgrade* reads *Low* inputs, outputs those bits at *High*
 - Clearly deducibly secure: low level user sees no outputs
 - Clearly does not exhibit strong noninterference, as no high level inputs!

Remove Determinism

- Previous assumption
 - Input, output synchronous
 - Output depends only on commands triggered by input
 - Sometimes absorbed into commands ...
 - Input processed one datum at a time
- Not realistic
 - In real systems, lots of asynchronous events

Generalized Noninterference

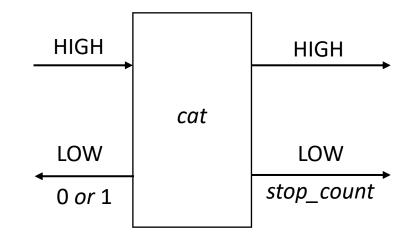
- Nondeterministic systems meeting noninterference property meet generalized noninterference-secure property
 - More robust than nondeducible security because minor changes in assumptions affect whether system is nondeducibly secure

Example

- System with High Holly, Low Lucy, text file at High

 - Holly can edit file, Lucy can run this program:

Security of System

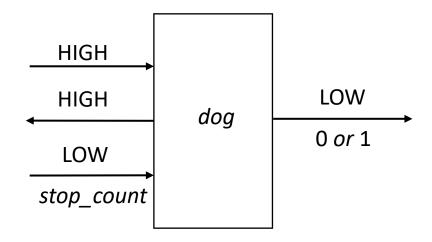

- Not noninterference-secure
 - High level inputs—Holly's changes—affect low level outputs
- May be deducibly secure
 - Can Lucy deduce contents of file from program?
 - If output meaningful ("This is right") or close ("Thes is right"), yes
 - Otherwise, no
- So deducibly secure depends on which inferences are allowed

Composition of Systems

- Does composing systems meeting generalized noninterference-secure property give you a system that also meets this property?
- Define two systems (cat, dog)
- Compose them

First System: cat

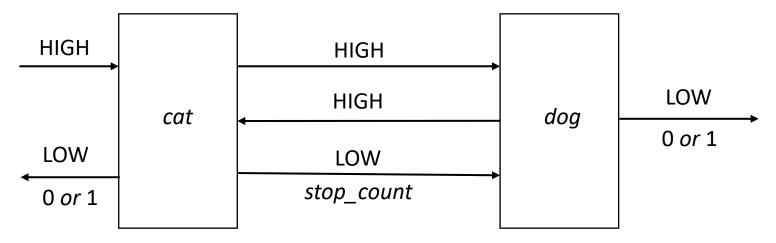
- Inputs, outputs can go left or right
- After some number of inputs, cat sends two outputs
 - First stop_count
 - Second parity of *High* inputs, outputs



Noninterference-Secure?

- If even number of *High* inputs, output could be:
 - 0 (even number of outputs)
 - 1 (odd number of outputs)
- If odd number of *High* inputs, output could be:
 - 0 (odd number of outputs)
 - 1 (even number of outputs)
- High level inputs do not affect output
 - So noninterference-secure

Second System: dog


- High outputs to left
- Low outputs of 0 or 1 to right
- *stop_count* input from the left
 - When it arrives, dog emits 0 or 1

Noninterference-Secure?

- When stop_count arrives:
 - May or may not be inputs for which there are no corresponding outputs
 - Parity of High inputs, outputs can be odd or even
 - Hence dog emits 0 or 1
- High level inputs do not affect low level outputs
 - So noninterference-secure

Compose Them

- Once sent, message arrives
 - But stop_count may arrive before all inputs have generated corresponding outputs
 - If so, even number of High inputs and outputs on cat, but odd number on dog
- Four cases arise

The Cases

- cat, odd number of inputs, outputs; dog, even number of inputs, odd number of outputs
 - Input message from cat not arrived at dog, contradicting assumption
- cat, even number of inputs, outputs; dog, odd number of inputs, even number of outputs
 - Input message from dog not arrived at cat, contradicting assumption

The Cases

- cat, odd number of inputs, outputs; dog, odd number of inputs, even number of outputs
 - dog sent even number of outputs to cat, so cat has had at least one input from left
- cat, even number of inputs, outputs; dog, even number of inputs, odd number of outputs
 - dog sent odd number of outputs to cat, so cat has had at least one input from left

The Conclusion

- Composite system catdog emits 0 to left, 1 to right (or 1 to left, 0 to right)
 - Must have received at least one input from left
- Composite system catdog emits 0 to left, 0 to right (or 1 to left, 1 to right)
 - Could not have received any from left (i.e., no HIGH inputs)
- So, High inputs affect Low outputs
 - Not noninterference-secure

Quiz

True or False: Non-deducibility includes non-interference, in the sense that if something is non-deducible, it is also non-interfering.