ECS 235B Module 40 Restrictiveness

Feedback-Free Systems

- System has *n* distinct components
- Components c_i , c_j are connected if any output of c_i is input to c_j
- System is *feedback-free* if for all c_i connected to c_i , c_j not connected to any c_i
 - Intuition: once information flows from one component to another, no information flows back from the second to the first

Feedback-Free Security

• *Theorem*: A feedback-free system composed of noninterference-secure systems is itself noninterference-secure

Some Feedback

- Lemma: A noninterference-secure system can feed a HIGH output o to a HIGH input i if the arrival of o at the input of the next component is delayed until after the next LOW input or output
- *Theorem*: A system with feedback as described in the above lemma and composed of noninterference-secure systems is itself noninterference-secure

Why Didn't They Work?

- For compositions to work, machine must act same way regardless of what precedes LOW input (HIGH, LOW, nothing)
- *dog* does not meet this criterion
 - If first input is *stop_count, dog* emits 0
 - If high level input precedes *stop_count, dog* emits 0 or 1

State Machine Model: 2-Bit Machine

Levels *High*, *Low*, meet 4 properties:

1. For every input i_k , state σ_j , there is an element $c_m \in C^*$ such that $T^*(c_m, \sigma_j) = \sigma_n$, where $\sigma_n \neq \sigma_j$

T* is total function, inputs and commands always move system to a different state

Property 2

- 2. There is an equivalence relation \equiv such that:
 - a. If system in state σ_i and HIGH sequence of inputs causes transition from σ_i to σ_j , then $\sigma_i \equiv \sigma_j$
 - 2 states equivalent if either reachable from the other state using only HIGH commands
 - b. If $\sigma_i \equiv \sigma_j$ and LOW sequence of inputs $i_1, ..., i_n$ causes system in state σ_i to transition to σ'_i , then there is a state σ'_j such that $\sigma'_i \equiv \sigma'_j$ and inputs $i_1, ..., i_n$ cause system in state σ_j to transition to σ'_j
 - States resulting from giving same LOW commands to the two equivalent original states have same LOW projection
- \equiv holds if LOW projections of both states are same
 - If 2 states equivalent, HIGH commands do not affect LOW projections

Property 3

- Let $\sigma_i \equiv \sigma_j$. If sequence of HIGH outputs $o_1, ..., o_n$ indicate system in state σ_i transitioned to state σ_i' , then for some state σ_j' with $\sigma_j' \equiv \sigma_i'$, sequence of HIGH outputs $o_1', ..., o_m'$ indicates system in σ_j transitioned to σ_j'
 - HIGH outputs do not indicate changes in LOW projection of states

Property 4

- Let $\sigma_i \equiv \sigma_j$, let *c*, *d* be HIGH output sequences, *e* a LOW output. If output sequence *ced* indicates system in state σ_i transitions to σ_i' , then there are HIGH output sequences *c'* and *d'* and state σ_j' such that *c'ed'* indicates system in state σ_i transitions to state σ_j'
 - Intermingled LOW, HIGH outputs cause changes in LOW state reflecting LOW outputs only

Restrictiveness

• System is *restrictive* if it meets the preceding 4 properties

Composition

 Intuition: by 3 and 4, HIGH output followed by LOW output has same effect as the LOW input, so composition of restrictive systems should be restrictive

Composite System

- System M_1 's outputs are acceptable as M_2 's inputs
- μ_{1i} , μ_{2i} states of M_1 , M_2
- States of composite system pairs of M_1 , M_2 states (μ_{1i} , μ_{2i})
- e event causing transition
- *e* causes transition from state (μ_{1a} , μ_{2a}) to state (μ_{1b} , μ_{2b}) if any of 3 conditions hold

Conditions

- 1. M_1 in state μ_{1a} and *e* occurs, M_1 transitions to μ_{1b} ; *e* not an event for M_2 ; and $\mu_{2a} = \mu_{2b}$
- 2. M_2 in state μ_{2a} and *e* occurs, M_2 transitions to μ_{2b} ; *e* not an event for M_1 ; and $\mu_{1a} = \mu_{1b}$
- 3. M_1 in state μ_{1a} and e occurs, M_1 transitions to μ_{1b} ; M_2 in state μ_{2a} and e occurs, M_2 transitions to μ_{2b} ; e is input to one machine, and output from other

Intuition

- Event causing transition in composite system causes transition in at least 1 of the components
- If transition occurs in exactly 1 component, event must not cause transition in other component when not connected to the composite system

Equivalence for Composite

• Equivalence relation for composite system

$$(\sigma_a, \sigma_b) \equiv_C (\sigma_c, \sigma_d) \text{ iff } \sigma_a \equiv \sigma_c \text{ and } \sigma_b \equiv \sigma_d$$

 Corresponds to equivalence relation in property 2 for component system

The system resulting from the composition of two restrictive systems is itself restrictive

Quiz

True or False: The composition of two restrictive systems is not restrictive