
ECS 235B Module 45
Compiler Based

Information Flow Mechanisms

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 1

Compiler-Based Mechanisms

• Detect unauthorized information flows in a program during
compilation
• Analysis not precise, but secure
• If a flow could violate policy (but may not), it is unauthorized
• No unauthorized path along which information could flow remains

undetected

• Set of statements certified with respect to information flow policy if
flows in set of statements do not violate that policy

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 2

Example

if x = 1 then y := a;
else y := b;
• Information flows from x and a to y, or from x and b to y
• Certified only if x ≤ y and a ≤ y and b ≤ y
• Note flows for both branches must be true unless compiler can determine

that one branch will never be taken

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 3

Declarations

• Notation:
x: int class { A, B }

means x is an integer variable with security class at least lub{ A, B }, so
lub{ A, B } ≤ x
• Distinguished classes Low, High
• Constants are always Low

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 4

Input Parameters

• Parameters through which data passed into procedure
• Class of parameter is class of actual argument

ip: type class { ip }

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 5

Output Parameters

• Parameters through which data passed out of procedure
• If data passed in, called input/output parameter

• As information can flow from input parameters to output parameters,
class must include this:

op: type class { r1, …, rn }
where ri is class of ith input or input/output argument

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 6

Example

proc sum(x: int class { A };
var out: int class { A, B });

begin
out := out + x;

end;
• Require x ≤ out and out ≤ out

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 7

Array Elements

• Information flowing out:
… := a[i]

Value of i, a[i] both affect result, so class is lub{ a[i], i }
• Information flowing in:

a[i] := …
• Only value of a[i] affected, so class is a[i]

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 8

Assignment Statements

x := y + z;
• Information flows from y, z to x, so this requires lub{ y, z } ≤ x
More generally:
y := f(x1, …, xn)
• the relation lub{ x1, …, xn } ≤ y must hold

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 9

Compound Statements

x := y + z; a := b * c – x;
• First statement: lub{ y, z } ≤ x
• Second statement: lub{ b, c, x } ≤ a
• So, both must hold (i.e., be secure)
More generally:
S1; … Sn;
• Each individual Si must be secure

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 10

Conditional Statements

if x + y < z then a := b else d := b * c – x; end

• Statement executed reveals information about x, y, z, so lub{ x, y, z } ≤
glb{ a, d }

More generally:
if f(x1, …, xn) then S1 else S2; end

• S1, S2 must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S1, S2 }

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 11

Iterative Statements

while i < n do begin a[i] := b[i]; i := i + 1; end

• Same ideas as for “if”, but must terminate

More generally:
while f(x1, …, xn) do S;

• Loop must terminate;
• S must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S }

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 12

Goto Statements

• No assignments
• Hence no explicit flows

• Need to detect implicit flows
• Basic block is sequence of statements that have one entry point and

one exit point
• Control in block always flows from entry point to exit point

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 13

Example Program
proc tm(x: array[1..10][1..10] of integer class {x};

var y: array[1..10][1..10] of integer class {y});

var i, j: integer class {i};

begin

b1 i := 1;

b2 L2: if i > 10 goto L7;

b3 j := 1;

b4 L4: if j > 10 then goto L6;

b5 y[j][i] := x[i][j]; j := j + 1; goto L4;

b6 L6: i := i + 1; goto L2;

b7 L7:

end;

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 14

Flow of Control

b1 b2 b7

b6 b3

b4

b5

i > n
i ≤ n

j > n

j ≤ n

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 15

Immediate Forward Dominators

• Idea: when two paths out of basic block, implicit flow occurs
• Because information says which path to take

• When paths converge, either:
• Implicit flow becomes irrelevant; or
• Implicit flow becomes explicit

• Immediate forward dominator of basic block b (written IFD(b)) is first
basic block lying on all paths of execution passing through b

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 16

IFD Example

• In previous procedure:
• IFD(b1) = b2 one path
• IFD(b2) = b7 b2®b7 or b2®b3®b6®b2®b7
• IFD(b3) = b4 one path
• IFD(b4) = b6 b4®b6 or b4®b5®b6
• IFD(b5) = b4 one path
• IFD(b6) = b2 one path

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 17

Requirements

• Bi is set of basic blocks along an execution path from bi to IFD(bi)
• Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which execution path
containing basic blocks in Bi used
• Analogous to conditional expression

• Requirements for secure:
• All statements in each basic blocks are secure
• lub{ xi1, …, xin } ≤ glb{ y | y target of assignment in Bi }

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 18

Example of Requirements

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 19

b1 b2 b7

b6 b3

b4

b5

i > n
i ≤ n

j > n

j ≤ n

Low ≤ i

Low ≤ i
lub{ Low, i } ≤ i

lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j

b1 i := 1;
b2 L2: if i > 10 goto L7;
b3 j := 1;
b4 L4: if j > 10 then goto L6;
b5 y[j][i] := x[i][j];

j := j + 1; goto L4;
b6 L6: i := i + 1; goto L2;
b7 L7:

Example of Requirements

• Within each basic block:
b1: Low ≤ i b3: Low ≤ j b6: lub{ Low, i } ≤ i
b5: lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j
• Combining, lub{ x[i][j], i, j } ≤ y[j][i] }
• From declarations, true when lub{ x, i } ≤ y

• B2 = {b3, b4, b5, b6}
• Assignments to i, j, y[j][i]; conditional is i ≤ 10
• Requires i ≤ glb{ i, j, y[j][i] }
• From declarations, true when i ≤ y

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 20

Example (continued)

• B4 = { b5 }
• Assignments to j, y[j][i]; conditional is j ≤ 10
• Requires j ≤ glb{ j, y[j][i] }
• From declarations, means i ≤ y

• Result:
• Combine lub{ x, i } ≤ y; i ≤ y; i ≤ y
• Requirement is lub{ x, i } ≤ y

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 21

Procedure Calls

tm(a, b);
From previous slides, to be secure, lub{ x, i } ≤ y must hold
• In call, x corresponds to a, y to b
• Means that lub{ a, i } ≤ b, or a ≤ b
More generally:
proc pn(i1, …, im: int; var o1, …, on: int); begin S end;

• S must be secure
• For all j and k, if ij ≤ ok, then xj ≤ yk
• For all j and k, if oj ≤ ok, then yj ≤ yk

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 22

Exceptions

proc copy(x: integer class { x };
var y: integer class Low);

var sum: integer class { x };
z: int class Low;

begin
y := z := sum := 0;
while z = 0 do begin

sum := sum + x;
y := y + 1;

end
end

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 23

Exceptions (cont)

• When sum overflows, integer overflow trap
• Procedure exits
• Value of sum is MAXINT/y
• Information flows from y to sum, but sum ≤ y never checked

• Need to handle exceptions explicitly
• Idea: on integer overflow, terminate loop

on integer_overflow_exception sum do z := 1;
• Now information flows from sum to z, meaning sum ≤ z
• This is false (sum = { x } dominates z = Low)

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 24

Infinite Loops

proc copy(x: integer 0..1 class { x };
var y: integer 0..1 class Low);

begin
y := 0;
while x = 0 do

(* nothing *);
y := 1;

end
• If x = 0 initially, infinite loop
• If x = 1 initially, terminates with y set to 1
• No explicit flows, but implicit flow from x to y

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 25

Semaphores

Use these constructs:
wait(x): if x = 0 then block until x > 0; x := x – 1;

signal(x): x := x + 1;
• x is semaphore, a shared variable
• Both executed atomically

Consider statement
wait(sem); x := x + 1;

• Implicit flow from sem to x
• Certification must take this into account!

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 26

Flow Requirements

• Semaphores in signal irrelevant
• Don’t affect information flow in that process

• Statement S is a wait
• shared(S): set of shared variables read

• Idea: information flows out of variables in shared(S)
• fglb(S): glb of assignment targets following S
• So, requirement is shared(S) ≤ fglb(S)

• begin S1; … Sn end
• All Si must be secure
• For all i, shared(Si) ≤ fglb(Si)

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 27

Example

begin

x := y + z; (* S1 *)

wait(sem); (* S2 *)

a := b * c – x; (* S3 *)

end

• Requirements:
• lub{ y, z } ≤ x
• lub{ b, c, x } ≤ a
• sem ≤ a

• Because fglb(S2) = a and shared(S2) = sem

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 28

Concurrent Loops

• Similar, but wait in loop affects all statements in loop
• Because if flow of control loops, statements in loop before wait may be

executed after wait

• Requirements
• Loop terminates
• All statements S1, …, Sn in loop secure
• lub{ shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)

• Where t1, …, tm are variables assigned to in loop

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 29

Loop Example

while i < n do begin

a[i] := item; (* S1 *)

wait(sem); (* S2 *)

i := i + 1; (* S3 *)

end

• Conditions for this to be secure:
• Loop terminates, so this condition met
• S1 secure if lub{ i, item } ≤ a[i]
• S2 secure if sem ≤ i and sem ≤ a[i]
• S3 trivially secure

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 30

cobegin/coend

cobegin

x := y + z; (* S1 *)

a := b * c – y; (* S2 *)

coend

• No information flow among statements
• For S1, lub{ y, z } ≤ x
• For S2, lub{ b, c, y } ≤ a

• Security requirement is both must hold
• So this is secure if lub{ y, z } ≤ x Ù lub{ b, c, y } ≤ a

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 31

Soundness

• Above exposition intuitive
• Can be made rigorous:
• Express flows as types
• Equate certification to correct use of types
• Checking for valid information flows same as checking types conform to

semantics imposed by security policy

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 32

Quiz

In the certification of iterative statements such as a while statement,
why is the condition that the loop terminate necessary?
1. If it were not present, the certification mechanism could not

determine if the program will halt
2. If it were not present, then whether the loop terminates or not will

cause an unauthorized leak of information
3. If it were not present, the certification mechanism could not use

the requirements for the conditional (if) statement
4. It is not necessary

March 1, 2021; Module 45 ECS 235B, Foundations of Computer and Information Security 33

