
ECS 235B Module 50
Isolation

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 1

Isolation

• Constrain process execution in such a way it can only interact with
other entities in a manner preserving isolation
• Hardware isolation
• Virtual machines
• Library operating systems
• Sandboxes

• Modify program or process so that its actions will preserve isolation
• Program rewriting
• Compiling
• Loading

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 2

Hardware Isolation

• Ensure the hardware is disconnected from any other system
• This includes networking, including wireless

• Example: SCADA systems
• 1st generation: serial protocols, not connected to other systems or networks; no

security defenses needed, focus being on malfunctions
• 2nd generation: serial networks connected to computers not connected to Internet
• 3rd generation: TCP/IP protocol running on networks connected to Internet; need

security defenses for attackers coming in over Internet

• Example: electronic voting systems
• Physical isolation protects systems from attackers changing votes remotely
• Required in many U.S. states, such as California: never connect them to any network

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 3

Virtual Machine

• Program that simulates hardware of a machine
• Machine may be an existing, physical one or an abstract one
• Uses special operating system, called virtual machine monitor (VMM) or

hypervisor, to provide environment simulating target machine

• Types of virtual machines
• Type 1 hypervisor: runs directly on hardware
• Type 2 hypervisor: runs on another operating system

• Existing OSes do not need to be modified
• Run under VMM, which enforces security policy
• Effectively, VMM is a security kernel

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 4

VMM as Security Kernel

• VMM deals with subjects (the VMs)
• Knows nothing about the processes within the VM

• VMM applies security checks to subjects
• By transitivity, these controls apply to processes on VMs

• Thus, satisfies rule of transitive confinement

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 5

Example 1: KVM/370

• KVM/370 is security-enhanced version of VM/370 VMM
• Goal: prevent communications between VMs of different security classes
• Like VM/370, provides VMs with minidisks, sharing some portions of those

disks
• Unlike VM/370, mediates access to shared areas to limit communication in

accordance with security policy

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 6

Example 2: VAX/VMM

• Can run either VMS or Ultrix
• 4 privilege levels for VM system
• VM user, VM supervisor, VM executive, VM kernel (both physical executive)

• VMM runs in physical kernel mode
• Only it can access certain resources

• VMM subjects: users and VMs

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 7

Example 2

• VMM has flat file system for itself
• Rest of disk partitioned among VMs
• VMs can use any file system structure

• Each VM has its own set of file systems
• Subjects, objects have security, integrity classes

• Called access classes
• VMM has sophisticated auditing mechanism

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 8

Example 3: Xen Hypervisor

• Xen 3.0 hypervisor on Intel virtualization technology
• Two modes, VMX root and nonroot operation
• Hardware-based VMs (HVMs) are fully virtualized domains, support

unmodified guest operating systems and run in non-root operation
mode
• Xen hypervisor runs in VMX root mode

• 8 levels of privilege
• 4 in VMX root operation mode
• 4 in VMX root operation mode
• No need to virtualize one of the privilege levels!

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 9

Xen and Privileged Instructions

• Guest operating system executes privileged instruction
• But this can only be done as a VMX root operation

• Control transfers to Xen hypervisor (called VM exit)
• Hypervisor determines whether to execute instruction
• After, it updates HVM appropriately and returns control to guest

operating system (called VM entry)

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 10

Problem

• Physical resources shared
• System CPU, disks, etc.

• May share logical resources
• Depends on how system is implemented

• Allows covert channels

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 11

Container

• Unlike VM, all containers on a system share same kernel, execute
instructions natively (no emulation)
• Each container contains libraries, applications needed to execute the

program(s) contained in it
• Isolates contents from other containers

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 12

Example: Docker

• Widely used in Linux systems
• Container with all libraries, programs, other data for contained

software
• Runs as a daemon that launches containers, monitors them, controls

levels of isolation using Linux kernel features
• Containers have own namespace, file system, reduced set of capabilities
• Control network access; each container can have this set as appropriate, and

each assigned its own IP address
• root user of container differs from that of system

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 13

Alternate Approach

• VMs present a full system (hardware and operating system)
• But process in the VM may be able to optimize use of system resources better

than the VM
• Example: VM operating system assumes disk drive, but it’s really SSD

• Proposed: a kernel with only 2 functions:
• Use hardware protections to prevent processes from accessing another’s

memory, or overwriting it
• Manage access to shared physical resources
• Everything else is done at user level

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 14

Library Operating System

• A library, or set of libraries, that provide operating system
functionality at the user level
• Goal is to minimize overhead of context switching and provide processes with

as much flexibility as possible

• Example: V++ Cache Kernel
• Cache kernel tracks OS objects such as address spaces, and handles process

co-ordination (like scheduling) -- runs in privileged mode
• Application kernel manages process resources such as paging, when on page

fault it loads new page mapping descriptor into Cache Kernel – runs in user
mode

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 15

Example: Drawbridge

• Library OS developed for Windows 7
• Supports standard Windows applications (Excel, IIS), gives access to features

like DirectX

• Security monitor provides application binary interface (ABI),
virtualizing system resources
• Processes use library OS to access ABI; all interactions with operating system

go through that interface
• ABI has calls to manage virtual memory, processes and threads, etc.

• Library OS provides application services like frameworks, graphics
engines

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 16

Example: Drawbridge (con’t)

• Kernel dependencies handled using Windows NT emulator at lowest
level of library OS
• Effect: all server dependencies, Windows subsystems moved into user space

• Human-computer interactions use emulated device drivers tunneling
input, output between desktop and security monitor
• Provides process isolation
• Experiment: run malware that deleted all registry keys

• Under Drawbridge, only the process with the malware was affected
• Without Drawbridge, all processes affected

• Experiment: try attack vectors causing Internet Explorer to escape its normal
protected mode (so writing to disk was unconstrainted, for example)
• Drawbridge kept Internet Explorer properly confined

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 17

Sandboxes

• An environment in which actions are restricted in accordance with
security policy
• Limit execution environment as needed

• Program not modified
• Libraries, kernel modified to restrict actions

• Modify program to check, restrict actions
• Like dynamic debuggers, profilers

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 18

Examples Limiting Environment

• Java virtual machine
• Security manager limits access of downloaded programs as policy dictates

• Sidewinder firewall
• Type enforcement limits access
• Policy fixed in kernel by vendor

• Domain Type Enforcement
• Enforcement mechanism for DTEL
• Kernel enforces sandbox defined by system administrator

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 19

Modifying Programs

• Add breakpoints or special instructions to source, binary code
• On trap or execution of special instructions, analyze state of process

• Variant: software fault isolation
• Add instructions checking memory accesses, other security issues
• Any attempt to violate policy causes trap

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 20

Example: Janus

• Implements sandbox in which system calls checked
• Framework does runtime checking
• Modules determine which accesses allowed

• Configuration file
• Instructs loading of modules
• Also lists constraints

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 21

Configuration File
basic module

basic

define subprocess environment variables

putenv IFS=”\t\n “ PATH=/sbin:/bin:/usr/bin TZ=PST8PDT

deny access to everything except files under /usr

path deny read,write *

path allow read,write /usr/*

allow subprocess to read files in library directories

needed for dynamic loading

path allow read /lib/* /usr/lib/* /usr/local/lib/*

needed so child can execute programs

path allow read,exec /sbin/* /bin/* /usr/bin/*

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 22

How It Works

• Framework builds list of relevant system calls
• Then marks each with allowed, disallowed actions

• When monitored system call executed
• Framework checks arguments, validates that call is allowed for those arguments

• If not, returns failure
• Otherwise, give control back to child, so normal system call proceeds

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 23

Use

• Reading MIME Mail: fear is user sets mail reader to display attachment using
Postscript engine
• Has mechanism to execute system-level commands
• Embed a file deletion command in attachment …

• Janus configured to disallow execution of any subcommands by Postscript engine
• Above attempt fails

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 24

Example: Capsicum

• Framework developed to sandbox an application
• Capability provides fine-grained rights for accessing, manipulating

underlying file
• To enter sandbox (capability mode), process issues cap_enter
• Given file descriptor, create capability with cap_new

• Mask of rights indicates what rights are to be set; if capability exists, mask must be
subset of rights in that capability

• At user level, library provides interface to start sandboxed process and
delegate rights to it
• All nondelegated file descriptors closed
• Address space flushed
• Socket returned to creator to enable it to communicate with new process

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 25

Example: Capsicum (con’t)

• Global namespaces not available
• So system calls that depend on that (like open(2)) don’t work

• Need to use a modified open that takes file descriptor for containing directory
• Other system calls modified appropriately

• System calls creating memory objects can create anonymous ones, not named ones (as
those names are in global namespace)

• Subprocesses cannot escalate privileges
• But a privileged process can enter capability mode

• All restrictions applied in kernel, not at system call interface

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 26

Program Confinement and TCB

• Confinement mechanisms part of trusted computing bases
• On failure, less protection than security officers, users believe
• “False sense of security”

• Must ensure confinement mechanism correctly implements desired
security policy

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 27

Program Modification

• Source, binary code transformed to implement confinement
constraints
• Can be done in several ways:
• Code rewriter, used before compiling to alter source code
• Compiler, transforming code as it compiles it
• Binary code rewriter, used on the executable
• Linking loader, used to transform linkages between program and library

functions, system calls to validate interactions

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 28

Rewriting

• Software fault isolation: put untrusted modules in special virtual
segments
• Code modified so control flow remains in that segment when module invoked
• All memory accesses in segment are to data in that segment

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 29

Implementation

• Each virtual segment has a unique segment identifier in upper part of
virtual address
• Unsafe instruction is one that accesses an address that cannot be verified to

be in module’s segment

• Segment matching: analyze program, identify all unsafe instructions
and wrap them so they are checked at run time
• If check shows address not in module, trap it

• Alternative: set upper bits of any virtual address to segment identifier
• Illegal memory accesses handled in usual way

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 30

Implementation (con’t)

• Threat: untrusted module issues system call to close file that trusted
modules rely on
• Causes program crash or other undesirable actions

• Trusted arbitration code places in its own segment
• This accepts RPC requests from other modules, validates them, and translates

them into system calls
• Results returned via RPC

• Untrusted modules rewritten so system calls done vis the arbitration
code (ie, using RPC to that module)

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 31

Rewriting

• Can put security-sensitive parts into separate trusted process
• Application rewritten so untrusted parts invoke trusted parts via IPC
• Both trusted, untrusted parts must be started to run application

• Example: Nizza architecture
• Untrusted process executed on VM
• AppCore, a trusted process, executed in trusted computing environment

• Analyze application to identify security-sensitive components
• Place these components into a standalone process (AppCore). May need to be altered to

conform to security policy
• Transform rest of process to use AppCore to execute security-sensitive components

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 32

Compiling

• Compiler implements a security policy so resulting executable
provides desired isolation
• Example: type-safe languages, in which compiler verifies use of types is

consistent

• Certifying compiler includes proof that program satisfies specified
security properties
• Proof can be validated before execution

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 33

Transforming Compiler

• CCured imposes type safety on C programs by adding semantics to
constructs that can produce undefined results
• Safe pointer of type t points to the address of an object of type t, or 0 (NULL

pointer)
• Sequence pointer points into memory area of objects of type t; so check is

that it is a pointer of type t, points to object of type t in that memory area
• Dynamic pointer can point to untyped areas of memory, or memory of

arbitrary type (this is tagged with type of values currently in that area)

• Type inference algorithm used to construct CCured program honoring
type rules

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 34

Certifying Compiler

• Touchstone works on type-safe subset of C
• All array references are checked to ensure they are in bounds

• Compiler translates program into assembly
• VCGen generates verification conditions

• Works on per-function basis using symbolic execution
• Type specifications declare types of arguments (preconditions) and return values

(postconditions)
• Builds a predicate based on machine instructions
• On a return instruction, emits a predicate that includes check on instantiation of

preconditions, predicate built from assembly language, and a check on
postconditions

• Predicate can be proved iff program satisfies postcondition and registers preserved
on entry are not changed

• Theorem prover verifies proof

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 35

Loading

• Like sandboxing, but framework embedded in libraries and not a
separate process
• When called, a constrained library applies security policy rules to

determine whether it should take desired action
• Example: Aurasium for Android apps
• Goal: prevent exfiltration of sensitive data or misuse of resources
• Adds code to monitor all interactions with phone’s resources; these can be

considerably more granular than default permissions set at installation

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 36

Aurasium

• Goal: prevent exfiltration of sensitive data or misuse of resources on
Android phone by apps
• Adds code to monitor all interactions with phone’s resources; these can be

considerably more granular than default permissions set at installation
• First part: tool that inserts code to enforce policies when app calls on

phone resources, such as SMS messages
• Second part: use modified Android standard C libraries that

determine whether app’s requested system call should be blocked
• App signatures verified before Aurasium transforms app; then

Aurasium signs app
• Issue is that when Aurasium transforms app, original signature no longer valid

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 37

Quiz

What is the difference between a virtual machine and a container?
1. A virtual machine has its own kernel in it; a container uses the host

system’s kernel
2. A host machine can run several containers at once; a host can run

only one virtual machine at a time
3. Containers provide the libraries needed to execute a process; a

virtual machine does not have any libraries that a process can use
4. The name

March 8, 2021; Module 50 ECS 235B, Foundations of Computer and Information Security 38

