
ECS 235B Module 52
Detecting Covert Channels

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 1

Detection

• Manner in which resource is shared controls who can send, receive
using that resource
• Noninterference
• Shared Resource Matrix Methodology
• Information flow analysis
• Covert flow trees

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 2

Noninterference

• View “read”, “write” as instances of information transfer
• Then two processes can communicate if information can be

transferred between them, even in the absence of a direct
communication path
• A covert channel
• Also sounds like interference …

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 3

Example: SAT

• Secure Ada Target, multilevel security policy
• Approach:
• p(i, l) removes all instructions issued by subjects dominated by level l from

instruction stream i
• A(i, s) state resulting from execution of i on state s
• s.v(s) describes subject s’s view of state s

• System is noninterference-secure iff for all instruction sequences i,
subjects s with security level l(s), states s,

A(p(i, l(s)), s).v(s) = A(i, s).v(s)

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 4

Theorem

• Version of the Unwinding Theorem

• Let S be set of system states. A specification is noninterference-secure if, for each
subject s at security level l(s), there exists an equivalence relation º: S´S such
that
• for s1, s2 Î S, when s1 º s2, s1.v(s) = s2.v(s)
• for s1, s2 Î S and any instruction i, when s1 º s2, A(i, s1) º A(i, s2)
• for s Î S and instruction stream i, if p(i, l(s)) is empty, A(p(i, l(s)), s).v(s) =
s.v(s)

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 5

Intuition

• System is noninterference-secure if:
• Equivalent states have the same view for each subject
• View remains unchanged if any instruction is executed
• Instructions from higher-level subjects do not affect the state from the

viewpoint of the lower-level subjects

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 6

Analysis of SAT

• Focus on object creation instruction and readable object set
• In these specifications:
• s subject with security level l(s)
• o object with security level l(o), type t(o)
• s current state
• Set of existing objects listed in a global object table T(s)

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 7

Specification 1

• object_create:
[s¢ = object_create(s,o,l(o),t(o),s) Ù s¢ ≠ s]

Û
[o Ï T(s) Ù l(s) ≤ l(o)]

• The create succeeds if, and only if, the object does not yet exist and
the clearance of the object will dominate the clearance of its creator
• In accord with the “writes up okay” idea

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 8

Specification 2

• readable object set: set of existing objects that subject could read
• can_read(s, o, s) true if in state s, o is of a type that s can read (ignoring

permissions)

• o Ï readable(s, s) Û [o Ï T(s) Ú ¬(l(o) ≤ l(s)) Ú ¬(can_read(s, o, s))]
• Can’t read a nonexistent object, one with a security level that the

subject’s security level does not dominate, or object of the wrong
type

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 9

Specification 3

• SAT enforces tranquility
• Adding object to readable set means creating new object

• Add to readable set:
[o Ï readable(s, s) Ù o Î readable(s, s¢)] Û

[s¢ = object_create(s,o,l(o),t(o),s) Ù o Ï T(s) Ù l(s¢) ≤ l(o) ≤ l(s) Ù
can_read(s, o, s¢)]

• Says object must be created, levels and discretionary access controls
set properly

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 10

Check for Covert Channels

• s1, s2 the same except:
• o exists only in latter
• ¬(l(o) ≤ l(s))

• Specification 2:
• o Ï readable(s, s1) { o doesn’t exist in s1}
• o Ï readable(s, s2) { ¬(l(o) ≤ l(s)) }

• Thus s1 º s2
• Condition 1 of theorem holds

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 11

Continue Analysis

• s¢ issues command to create o:
• with l(o) = l(s); and
• of type with can_read(s, o, s1¢)

• s1¢ state after object_create(s¢, o, l(o), t(o), s1)

• Specification 1
• s1¢ differs from s1 with o in T(s1)

• New entry satisfies:
• can_read(s, o, s1¢)
• l(s¢) ≤ l(o) ≤ l(s), where s¢ created o

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 12

Continue Analysis

• o exists in s2 so:
s2¢ = object_create(s¢, o, s2) = s2

• But this means
¬[A(object_create(s¢, o, l(o), t(o), s2), s2) º

A(object_create(s¢, o, l(o), t(o), s1), s1)]
• Because create fails in s2 but succeeds in s1

• So condition 2 of theorem fails
• This implies a covert channel as system is not noninterference-secure

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 13

Example Exploit

• To send 1:
• High subject creates high object
• Recipient tries to create same object but at low

• Creation fails, but no indication given
• Recipient gives different subject type permission to read, write object

• Again fails, but no indication given
• Subject writes 1 to object, reads it
• Read returns nothing

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 14

Example Exploit

• To send 0:
• High subject creates nothing
• Recipient tries to create same object but at low

• Creation succeeds as object does not exist
• Recipient gives different subject type permission to read, write object

• Again succeeds
• Subject writes 1 to object, reads it

• Read returns 1

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 15

Use

• Can analyze covert storage channels
• Noninterference techniques reason in terms of security levels (attributes of

objects)

• Covert timing channels much harder
• You would have to make ordering an attribute of the objects in some way

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 16

SRMM

• Shared Resource Matrix Methodology
• Goal: identify shared channels, how they are shared
• Steps:
• Identify all shared resources, their visible attributes [rows]
• Determine operations that reference (read), modify (write) resource

[columns]
• Contents of matrix show how operation accesses the resource

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 17

Example

• Multilevel security model
• File attributes:
• existence, owner, label, size

• File manipulation operations:
• read, write, delete, create
• create succeeds if file does not exist; gets creator as owner, creator’s label
• others require file exists, appropriate labels

• Subjects:
• High, Low

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 18

Shared Resource Matrix

read write delete create

existence R R R, M R, M

owner R M

label R R R M

size R M M M

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information
Security

Slide 18-19

Covert Storage Channel

• Properties that must hold for covert storage channel:
1. Sending, receiving processes have access to same attribute of shared object;
2. Sender can modify that attribute;
3. Receiver can reference that attribute; and
4. Mechanism for starting processes, properly sequencing their accesses to

resource

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 20

Example

• Consider attributes with both R, M in rows
• Let High be sender, Low receiver
• create operation both references, modifies existence attribute
• Low can use this due to semantics of create

• Need to arrange for proper sequencing accesses to existence
attribute of file (shared resource)

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 21

Use of Channel

• 3 files: ready, done, 1bit
• Low creates ready at High level
• High checks that file exists
• If so, to send 1, it creates 1bit; to send 0, skip
• Delete ready, create done at High level

• Low tries to create done at High level
• On failure, High is done
• Low tries to create 1bit at level High

• Low deletes done, creates ready at High level

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 22

Covert Timing Channel

• Properties that must hold for covert timing channel:
1.Sending, receiving processes have access to same attribute of shared object;
2.Sender, receiver have access to a time reference (wall clock, timer, event

ordering, …);
3.Sender can control timing of detection of change to that attribute by receiver;

and
4.Mechanism for starting processes, properly sequencing their accesses to

resource

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 23

Example

• Revisit variant of KVM/370 channel
• Sender, receiver can access ordering of requests by disk arm scheduler

(attribute)
• Sender, receiver have access to the ordering of the requests (time reference)
• High can control ordering of requests of Low process by issuing cylinder

numbers to position arm appropriately (timing of detection of change)
• So whether channel can be exploited depends on whether there is a

mechanism to (1) start sender, receiver and (2) sequence requests as desired

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 24

Uses of SRM Methodology

• Applicable at many stages of software life cycle model
• Flexbility is its strength

• Used to analyze Secure Ada Target
• Participants manually constructed SRM from flow analysis of SAT model
• Took transitive closure
• Found 2 covert channels

• One used assigned level attribute, another assigned type attribute

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 25

Summary

• Methodology comprehensive but incomplete
• How to identify shared resources?
• What operations access them and how?

• Incompleteness a benefit
• Allows use at different stages of software engineering life cycle

• Incompleteness a problem
• Makes use of methodology sensitive to particular stage of software

development

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 26

Information Flow Analysis

• When exception occurs due to value of variable, information leaks
about the value – a covert channel
• Same for synchronization and IPC primitives, because one process controls

when it sends message or blocks to receive one
• Shared variables are not covert channel as they are intended to share values

• Method for identifying covert storage channels in source code
• Assertion: these arise when processes can view, alter kernel variables
• So identify these variables

• May be directly referenced or indirectly referenced via system calls

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 27

Step 1

• Identify kernel functions, processes for analysis
• Processes function at privileged level, but carry out actions for ordinary users
• Ignore those executing on behalf of administrators (they can leak information

directly)
• Same with system calls available only to system administrator

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 28

Step 2

• Identify kernel variables user process can view and/or alter
• Process must control how variable is altered
• Process must be able to detect that variable was altered

• Detection criteria
• Value of a variable is obtained from system call
• Calling process can detect at least 2 different states of that variable

• Examples
• If system call assigns fixed value to a particular variable, process cannot

control how that variable is altered
• If value of x causes an error, state of x can be determined from the error

indicator

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 29

Directly vs. Indirectly Visible

x directly visible to caller as it is
returned directly to caller

x := func(abc, def);
if x = 0 then

x := x + 10;
return x;

y not directly visible to caller, but
indirectly visible as its state observed
through z

y := func(abc, def);
if y = 0 then

z := 1;
else

z := 0;
return z;

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 30

Step 3

• Analyze variables looking for covert channels
• Use method similar to that of SRM
• Discard primitives associated with variables that can only be altered or only

be viewed
• Assume recipient’s clearance does not dominate sender’s, and compare

resulting primitives to model of access control

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 31

Covert Flow Trees

• Information flow through shared resources modeled using tree
• Flow paths identified, and analyzed to see if each is legitimate

• 5 types of nodes
• Goal symbols: states that must exist for information to flow
• Operation symbol: symbol representing primitive operation
• Failure symbol: information cannot be sent along the path containing it
• And symbol: goal reached when these hold for all children

• If the child is a goal, then the goal is reached; and
• The child is an operation

• Or symbol: goal reached when either of these hold for any children
• If the child is a goal, then the goal is reached; or
• The child is an operation

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 32

More on Goal Symbols

• Modification goal: reached when attribute is modified
• Recognition goal: reached when modification of attribute is detected
• Direct recognition goal: reached when subject can detect modification of

attribute by direct reference or calling a function that returns it
• Inferred recognition goal: reached when subject can detect modification of

attribute without directly referencing it or calling a function that references
attribute directly
• Inferred-via goal: reached when information passed from one attribute to

others using specified primitive operation
• Recognized-new-state goal: reached when an attribute that was modified

when information passed using it is specified by inferred-via goal

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 33

Example Program

procedure Lockfile(f: file): boolean; (* lock file if not locked; return *)
begin (* false if locked, true otherwise *)

if not f.locked and empty(f.inuse) then
f.locked := true;

Lockfile := not f.locked;
end;
procedure Unlockfile(f: file); (* unlock file *)
begin

if f.locked then
f.locked := false;

end;
function Filelocked(f: file): boolean; (* return state of file locking *)
begin

Filelocked := f.locked;
end;

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 34

Example Program
procedure Openfile(f: file); (* open file if not locked and *)

begin (* permissions allow it *)

if not f.locked and read_access(process_id, f) then

(* add the process ID to the inuse set *)

f.inuse = f.inuse + process_id;
end;

function Fileopened(f: file): boolean;(* if permissions allow process to read file, *)

begin (* say if open; else return random value. *)

if not read_access(process_id, f) then

Fileopened := random(true, false);

else

Fileopened := not isempty(f.inuse);

end;

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 35

Step 1

• Determine attributes that primitive operations reference, modify,
return

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security

Lockfile Unlockfile Filelocked Openfile Fileopened

reference locked,inuse locked locked locked,inuse inuse

modify locked ∅ ∅ inuse ∅
return ∅ ∅ locked ∅ inuse

36

Step 2

• Construct the flow tree; controlled by type of goal
• Construction ends when all paths terminate in either operation

symbol of failure symbol
• If loops occur, a parameter defines number of times path may be traversed

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 37

Step 2 (con’t)

• Topmost goal: requires attribute be modified and the modification be
recognized
• 1 child (and) with 2 goals (modification, recognition goal symbols)

• Modification goal: requires primitive operation to modify attribute
• 1 child (or) with 1 child operation symbol per operation for all operations that

modify attribute

• Recognition goal: subject directly recognize or infer change in
attribute
• 1 child (or) with 2 children (direct recognition, inferred recognition goals)

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 38

Step 2 (con’t)

• Direct recognition goal: operation accesses attribute
• 1 child (or) with 1 child operation symbol per operation for each operation that returns

attribute

• Inferred recognition goal: modification referred on basis of 1 or more attributes
• 1 child (or) with 1 child inferred-via symbol per operation for each operation that references

an attribute and modifies an attribute

• Inferred-via goal: value of attribute inferred via some operation and new state of
attribute recognized
• 1 child (and) with 2 children (operation, recognize-new-state goal symbols)

• Recognize-new-state goal: value of attribute inferred via some operation and new
state of attribute recognized, requiring a recognition goal for attribute
• 1 child (or) and for each attribute enabling inference of modification of attribute in question,

1 child (recognition goal symbol)

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 39

Example: Goal State and Modification Branch

• The next few slides build covert flow tree for attribute locked

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security

Covert storage channel
via attribute locked

Modification of
attribute locked

Recognition of
attribute locked

+●

Modification of
attribute locked

Lockfile Unlockfile

goal
state

and
node

or
node

40

Example: Recognition Branch

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security

+

Recognition of
attribute locked

Direct recognition of
attribute locked

Indirect recognition of
attribute locked

+ +

Lockfile
Indirect attribute locked

via attribute inuse

41

Example: Indirect Branch

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security

Recognition of
attribute inuse

●

Indirect attribute locked
via attribute inuse

Openfile

42

Example: Recognize New Goal State Branch

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security

+

Recognition of
attribute inuse

Direct recognition of
attribute inuse

Indirect recognition of
attribute locked

+ +

Fileopened FALSE

43

Example: Analysis

• Put those parts of the tree together in the obvious way
• First list: ((Lockfile), (Unlockfile))

• As both modify attribute locked and lie on “modified” branch
• Second list: ((Filelocked), (Openfile, Fileopened))

• From direct recognition of modification of inuse attribute; second, from indirect
recognition of modification of attribute locked

• These result in 4 paths of communication:
• Lockfile followed by Filelocked
• Unlockfile followed by Filelocked
• Lockfile followed by Openfile, then Fileopened
• Unlockfile followed by Openfile, then Fileopened

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 44

Example: Analysis

• First two sequences in combination represent direct covert storage
channel
• High process transmits information to Low process by locking, unlocking file

• Last two sequences represent indirect covert storage channel
• High process locks file to send 0, unlocks to send 1
• Low process tries to open the file, then uses Fileopened to see if it succeeded
• If opened, file was not locked and it’s a 1; if not opened, file is locked, and it’s

a 0

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 45

Summary

• Covert flow trees, SRM come from idea that covert channels require
shared resources that one process can modify and another view
• Both can be used at any point in life cycle
• Covert flow trees identify explicit sequences of operations causing

information to flow
• SRM identifies channels, not sequences of operations

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 46

Quiz

Which of the following is true?
1. Storage channels involved shared objects; timing channels involve

attributes of shared entities
2. Storage channels are permanent; timing channels are ephemeral
3. Storage channels are much more common than timing channels
4. Storage channels and timing channels are distinct

March 8, 2021; Module 52 ECS 235B, Foundations of Computer and Information Security 47

