ECS 235B Module 5
Attribute-Based Access Control Matrix
Attributes

• *attribute*: variable of a specific data type associated with an entity

• *att*(o): set of attribute values associated with o, called the *attribute value tuple* of o

 • Each attribute is written *o.a*_i, with value v drawn from set *Va*_i

• *attribute predicate*: boolean expression built from attributes and constants with appropriate operation and relation symbols

 • Unary predicate: built from one attribute
 • Binary predicate: built from two attributes
 • Can have as many attributes in a predicate as needed
 • Example: *Alice.credit* ≥ $100.00
Attribute Based Access Control Matrix (ABAM)

• Change access control matrix so rows correspond to subjects and their attributes, and columns correspond to objects and their attributes

• Note access control matrix discussed previously is special case
 • Just make the attribute sets be empty
Primitive Operations

- **enter, delete** as before
- **create subject** *s* with **attribute tuple** $att(s)$: create subject *s* with given attribute tuple; additionally, add an identity attribute with a unique value
- **create object** *o* with **attribute tuple** $att(o)$: create object *o* with given attribute tuple; additionally, add an identity attribute with a unique value
- **destroy** as before except it also deletes the associated attribute tuple
- **update attribute** $o.a_i$: update $att(o) = (v_1, ..., v_i, ..., v_n)$ to $att(o)' = (v_1, ..., v_i', ..., v_n)$, where $v_i, v_i' \in V_{a_i}$, and $v_i \neq v_i'$
Commands

• Like previous commands, except that conditions may include attribute predicates

• Let \(p \) give \(q \) \(r \) rights over \(f \), if \(p \) owns \(f \) and value of \(p \)'s attribute \textit{jobcode} is between 3 and 5 inclusive

\[
\text{command } \textit{grant•read•file•attribute•3to5}(p, f, q) \bigg\mid
\begin{align*}
\text{if } \text{own in } A[p, f] \text{ and } &3 \leq p.\text{jobcode} \text{ and } p.\text{jobcode} \leq 5 \\
\text{then } &\text{enter } r \text{ into } A[q, f]; \end{align*}
\]

end