ECS 235B Module 8 Sharing in the Take-Grant Model

can•share Predicate

Definition:

• can • share($r, \mathbf{x}, \mathbf{y}, G_0$) if, and only if, there is a sequence of protection graphs $G_0, ..., G_n$ such that $G_0 \vdash^* G_n$ using only *de jure* rules and in G_n there is an edge from \mathbf{x} to \mathbf{y} labeled r.

can•share Theorem

- can share(r, x, y, G₀) if, and only if, there is an edge from x to y labeled r in G₀, or the following hold simultaneously:
 - There is an **s** in G₀ with an **s**-to-**y** edge labeled r
 - There is a subject **x**' = **x** or initially spans to **x**
 - There is a subject **s'** = **s** or terminally spans to **s**
 - There are islands $I_1, ..., I_k$ connected by bridges, and **x'** in I_1 and **s'** in I_k

Outline of Proof

- **s** has *r* rights over **y**
- s' acquires r rights over y from s
 - Definition of terminal span
- x' acquires r rights over y from s'
 - Repeated application of sharing among vertices in islands, passing rights along bridges
- **x'** gives *r* rights over **y** to **x**
 - Definition of initial span

Example Interpretation

- ACM is generic
 - Can be applied in any situation
- Take-Grant has specific rules, rights
 - Can be applied in situations matching rules, rights
- Question: what states can evolve from a system that is modeled using the Take-Grant Model?

Take-Grant Generated Systems

- Theorem: G_0 protection graph with 1 vertex, no edges; R set of rights. Then $G_0 \vdash^* G$ iff:
 - *G* finite directed graph consisting of subjects, objects, edges
 - Edges labeled from nonempty subsets of *R*
 - At least one vertex in *G* has no incoming edges

Outline of Proof

 \Rightarrow : By construction; G final graph in theorem

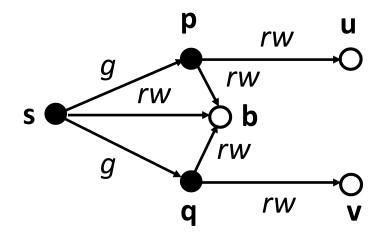
- Let $\mathbf{x}_1, ..., \mathbf{x}_n$ be subjects in G
- Let **x**₁ have no incoming edges
- Now construct *G*′as follows:
 - 1. Do " \mathbf{x}_1 creates ($\alpha \cup \{g\}$ to) new subject \mathbf{x}_i "
 - For all (x_i, x_j) where x_i has a rights over x_j, do
 "x₁ grants (α to x_j) to x_i"
 - 3. Let β be rights \mathbf{x}_i has over \mathbf{x}_j in G. Do " \mathbf{x}_1 removes (($\alpha \cup \{g\} - \beta$ to) \mathbf{x}_j "
- Now G' is desired G

Outline of Proof

⇐: Let **v** be initial subject, and $G_0 \vdash^* G$

- Inspection of rules gives:
 - G is finite
 - G is a directed graph
 - Subjects and objects only
 - All edges labeled with nonempty subsets of *R*
- Limits of rules:
 - None allow vertices to be deleted so **v** in *G*
 - None add incoming edges to vertices without incoming edges, so v has no incoming edges

Example: Shared Buffer



- Goal: p, q to communicate through shared buffer b controlled by trusted entity s
 - 1. **s** creates ({*r*, *w*} to new object) **b**
 - 2. **s** grants ({*r*, *w*} to **b**) to **p**
 - 3. **s** grants ({*r*, *w*} to **b**) to **q**

Quiz

In either 1 or 2 or both, can **y** obtain α rights over **x**?

