ECS 235B Module 10 Schematic Protection Model

Schematic Protection Model

- Type-based model
 - Protection type: entity label determining how control rights affect the entity
 - Set at creation and cannot be changed
 - Ticket: description of a single right over an entity
 - Entity has sets of tickets (called a domain)
 - Ticket is \mathbf{X}/r , where \mathbf{X} is entity and r right
 - Functions determine rights transfer
 - Link: are source, target "connected"?
 - Filter: is transfer of ticket authorized?

Link Predicate

- Idea: link_i(X, Y) if X can assert some control right over Y
- Conjunction of disjunction of:
 - $X/z \in dom(X)$
 - $X/z \in dom(Y)$
 - $Y/z \in dom(X)$
 - $Y/z \in dom(Y)$
 - true

Examples

• Take-Grant:

$$link(X, Y) = Y/g \in dom(X) \lor X/t \in dom(Y)$$

• Broadcast:

$$link(X, Y) = X/b \in dom(X)$$

• Pull:

$$link(X, Y) = Y/p \in dom(Y)$$

Filter Function

- Range is set of copyable tickets
 - Entity type, right
- Domain is subject pairs
- Copy a ticket X/r:c from dom(Y) to dom(Z)
 - **X**/*rc* ∈ *dom*(**Y**)
 - link_i(**Y**, **Z**)
 - $\tau(\mathbf{Y})/r:c \in f_i(\tau(\mathbf{Y}), \tau(\mathbf{Z}))$
- One filter function per link function

Example

- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times R$
 - Any ticket can be transferred (if other conditions met)
- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times RI$
 - Only tickets with inert rights can be transferred (if other conditions met)
- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = \emptyset$
 - No tickets can be transferred

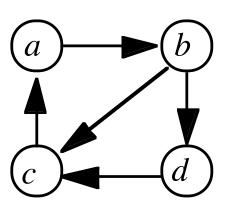
Example

- Take-Grant Protection Model
 - *TS* = { subjects }, *TO* = { objects }
 - RC = { tc, gc }, RI = { rc, wc }
 - $link(\mathbf{p}, \mathbf{q}) = \mathbf{p}/t \in dom(\mathbf{q}) \vee \mathbf{q}/g \in dom(\mathbf{p})$
 - f(subject, subject) = { subject, object } × { tc, gc, rc, wc }

Create Operation

- Must handle type, tickets of new entity
- Relation cc(a, b) [cc for can-create]
 - Subject of type a can create entity of type b
- Rule of acyclic creates:





Types

- cr(a, b): tickets created when subject of type a creates entity of type b [cr for create-rule]
- **B** object: $cr(a, b) \subseteq \{b/r: c \in RI\}$
 - A gets B/r:c iff $b/r:c \in cr(a, b)$
- **B** subject: cr(a, b) has two subsets
 - $cr_P(a, b)$ added to **A**, $cr_C(a, b)$ added to **B**
 - A gets B/r:c if $b/r:c \in cr_P(a,b)$
 - **B** gets A/r:c if $a/r:c \in cr_c(a, b)$

Non-Distinct Types

cr(a, a): who gets what?

- *self/r*:*c* are tickets for creator
- a/r:c tickets for created

```
cr(a, a) = \{ a/r:c, self/r:c \mid r:c \in R \}
```

Attenuating Create Rule

cr(a, b) attenuating if:

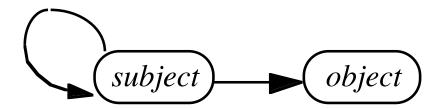
- 1. $cr_{C}(a, b) \subseteq cr_{P}(a, b)$ and
- 2. $a/r:c \in cr_P(a,b) \Rightarrow self/r:c \in cr_P(a,b)$

Example: Owner-Based Policy

- Users can create files, creator can give itself any inert rights over file
 - cc = { (user, file)}
 - $cr(user, file) = \{ file/r:c \mid r \in RI \}$
- Attenuating, as graph is acyclic, loop free

Example: Take-Grant

- Say subjects create subjects (type s), objects (type o), but get only inert rights over latter
 - $cc = \{ (s, s), (s, o) \}$
 - $cr_c(a, b) = \emptyset$
 - $cr_P(s, s) = \{s/tc, s/gc, s/rc, s/wc\}$
 - $cr_{P}(s, o) = \{s/rc, s/wc\}$
- Not attenuating, as no self tickets provided; subject creates subject



Safety Analysis

- Goal: identify types of policies with tractable safety analyses
- Approach: derive a state in which additional entries, rights do not affect the analysis; then analyze this state
 - Called a maximal state

Definitions

- System begins at initial state
- Authorized operation causes legal transition
- Sequence of legal transitions moves system into final state
 - This sequence is a *history*
 - Final state is *derivable* from history, initial state

More Definitions

- States represented by ^h
- Set of subjects *SUB*^h, entities *ENT*^h
- Link relation in context of state h is linkh
- Dom relation in context of state h is domh

$path^h(X,Y)$

- X, Y connected by one link or a sequence of links
- Formally, either of these hold:
 - for some i, $link_i^h(X, Y)$; or
 - there is a sequence of subjects \mathbf{X}_0 , ..., \mathbf{X}_n such that $link_i^h(\mathbf{X}, \mathbf{X}_0)$, $link_i^h(\mathbf{X}_n, \mathbf{Y})$, and for k = 1, ..., n, $link_i^h(\mathbf{X}_{k-1}, \mathbf{X}_k)$
- If multiple such paths, refer to $path_i^h(\mathbf{X}, \mathbf{Y})$

Capacity $cap(path^h(X,Y))$

- Set of tickets that can flow over path^h(X,Y)
 - If $link_i^h(\mathbf{X},\mathbf{Y})$: set of tickets that can be copied over the link (i.e., $f_i(\tau(\mathbf{X}), \tau(\mathbf{Y}))$)
 - Otherwise, set of tickets that can be copied over all links in the sequence of links making up the path^h(X,Y)
- Note: all tickets (except those for the final link) must be copyable

Flow Function

- Idea: capture flow of tickets around a given state of the system
- Let there be m $path^h$ s between subjects \mathbf{X} and \mathbf{Y} in state h. Then flow function

$$flow^h: SUB^h \times SUB^h \rightarrow 2^{T \times R}$$

is:

$$flow^h(\mathbf{X},\mathbf{Y}) = \bigcup_{i=1,...,m} cap(path_i^h(\mathbf{X},\mathbf{Y}))$$

Properties of Maximal State

- Maximizes flow between all pairs of subjects
 - State is called *
 - Ticket in flow*(X,Y) means there exists a sequence of operations that can copy the ticket from X to Y
- Questions
 - Is maximal state unique?
 - Does every system have one?

Formal Definition

- Definition: $g \leq_0 h$ holds iff for all $X, Y \in SUB^0$, $flow^g(X,Y) \subseteq flow^h(X,Y)$.
 - Note: if $g \le_0 h$ and $h \le_0 g$, then g, h equivalent
 - Defines set of equivalence classes on set of derivable states
- Definition: for a given system, state m is maximal iff $h \le_0 m$ for every derivable state h
- Intuition: flow function contains all tickets that can be transferred from one subject to another
 - All maximal states in same equivalence class

Maximal States

- Lemma. Given arbitrary finite set of states H, there exists a derivable state m such that for all $h \in H$, $h \le_0 m$
- Outline of proof: induction
 - Basis: $H = \emptyset$; trivially true
 - Step: |H'| = n + 1, where $H' = G \cup \{h\}$. By IH, there is a $g \in G$ such that $x \leq_0 g$ for all $x \in G$.

Outline of Proof

- M interleaving histories of *g*, *h* which:
 - Preserves relative order of transitions in g, h
 - Omits second create operation if duplicated
- *M* ends up at state *m*
- If $path^g(X,Y)$ for $X, Y \in SUB^g$, $path^m(X,Y)$
 - So $g \leq_0 m$
- If $path^h(X,Y)$ for $X, Y \in SUB^h$, $path^m(X,Y)$
 - So $h \leq_0 m$
- Hence m maximal state in H'

Answer to Second Question

- Theorem: every system has a maximal state *
- Outline of proof: *K* is set of derivable states containing exactly one state from each equivalence class of derivable states
 - Consider **X**, **Y** in SUB^0 . Flow function's range is $2^{T \times R}$, so can take at most $2^{|T \times R|}$ values. As there are $|SUB^0|^2$ pairs of subjects in SUB^0 , at most $2^{|T \times R|} |SUB^0|^2$ distinct equivalence classes; so K is finite
- Result follows from lemma

Safety Question

• In this model:

Is it possible to have a derivable state with \mathbf{X}/r :c in $dom(\mathbf{A})$, or does there exist a subject \mathbf{B} with ticket \mathbf{X}/rc in the initial state or which can demand \mathbf{X}/rc and $\tau(\mathbf{X})/r$:c in $flow^*(\mathbf{B},\mathbf{A})$?

- To answer: construct maximal state and test
 - Consider acyclic attenuating schemes; how do we construct maximal state?

Intuition

- Consider state h.
- State *u* corresponds to *h* but with minimal number of new entities created such that maximal state *m* can be derived with no create operations
 - So if in history from h to m, subject X creates two entities of type a, in u only one would be created; surrogate for both
- *m* can be derived from *u* in polynomial time, so if *u* can be created by adding a finite number of subjects to *h*, safety question decidable.

Fully Unfolded State

- State u derived from state 0 as follows:
 - delete all loops in cc; new relation cc '
 - mark all subjects as folded
 - while any $X \in SUB^0$ is folded
 - mark it unfolded
 - if **X** can create entity **Y** of type *y*, it does so (call this the *y*-surrogate of **X**); if entity **Y** ∈ *SUB*^g, mark it folded
 - if any subject in state h can create an entity of its own type, do so
- Now in state u

Termination

- First loop terminates as SUB⁰ finite
- Second loop terminates:
 - Each subject in SUB⁰ can create at most | TS | children, and | TS | is finite
 - Each folded subject in | SUBⁱ | can create at most
 | TS | i children
 - When i = |TS|, subject cannot create more children; thus, folded is finite
 - Each loop removes one element
- Third loop terminates as *SUB*^h is finite

Surrogate

- Intuition: surrogate collapses multiple subjects of same type into single subject that acts for all of them
- Definition: given initial state 0, for every derivable state h define surrogate function $\sigma:ENT^h \to ENT^h$ by:
 - if **X** in *ENT*⁰, then σ (**X**) = **X**
 - if Y creates X and $\tau(Y) = \tau(X)$, then $\sigma(X) = \sigma(Y)$
 - if **Y** creates **X** and $\tau(\mathbf{Y}) \neq \tau(\mathbf{X})$, then $\sigma(\mathbf{X}) = \tau(\mathbf{Y})$ -surrogate of $\sigma(\mathbf{Y})$

Implications

- $\tau(\sigma(X)) = \tau(X)$
- If $\tau(X) = \tau(Y)$, then $\sigma(X) = \sigma(Y)$
- If $\tau(X) \neq \tau(Y)$, then
 - $\sigma(X)$ creates $\sigma(Y)$ in the construction of u
 - $\sigma(\mathbf{X})$ creates entities \mathbf{X}' of type $\tau(\mathbf{X}') = \tau(\sigma(\mathbf{X}))$
- From these, for a system with an acyclic attenuating scheme, if **X** creates **Y**, then tickets that would be introduced by pretending that $\sigma(\mathbf{X})$ creates $\sigma(\mathbf{Y})$ are in $dom^u(\sigma(\mathbf{X}))$ and $dom^u(\sigma(\mathbf{Y}))$

Deriving Maximal State

• Idea

- Reorder operations so that all creates come first and replace history with equivalent one using surrogates
- Show maximal state of new history is also that of original history
- Show maximal state can be derived from initial state

Reordering

- H legal history deriving state h from state 0
- Order operations: first create, then demand, then copy operations
- Build new history *G* from *H* as follows:
 - Delete all creates
 - "X demands Y/r:c" becomes " $\sigma(X)$ demands $\sigma(Y)/r:c$ "
 - "Y copies X /r:c from Y" becomes " $\sigma(Y)$ copies $\sigma(X)/r$:c from $\sigma(Y)$ "

Tickets in Parallel

- Lemma
 - All transitions in G legal; if $X/r:c \in dom^h(Y)$, then $\sigma(X)/r:c \in dom^h(\sigma(Y))$
- Outline of proof: induct on number of copy operations in H

Basis

- H has create, demand only; so G has demand only. σ preserves type, so by construction every demand operation in G legal.
- 3 ways for \mathbf{X}/r :c to be in $dom^h(\mathbf{Y})$:
 - $X/r:c \in dom^0(Y)$ means $X, Y \in ENT^0$, so trivially $\sigma(X)/r:c \in dom^g(\sigma(Y))$ holds
 - A create added $X/r:c \in dom^h(Y)$: previous lemma says $\sigma(X)/r:c \in dom^g(\sigma(Y))$ holds
 - A demand added $X/r:c \in dom^h(Y)$: corresponding demand operation in G gives $\sigma(X)/r:c \in dom^g(\sigma(Y))$

Hypothesis

- Claim holds for all histories with k copy operations
- History H has k+1 copy operations
 - H' initial sequence of H composed of k copy operations
 - h' state derived from H'

Step

- G'sequence of modified operations corresponding to H'; g'derived state
 - G'legal history by hypothesis
- Final operation is "Z copied X/r:c from Y"
 - So h, h'differ by at most $X/r:c \in dom^h(Z)$
 - Construction of G means final operation is $\sigma(X)/r:c \in dom^g(\sigma(Y))$
- Proves second part of claim

Step

- H'legal, so for H to be legal, we have:
 - 1. $\mathbf{X}/rc \in dom^h'(\mathbf{Y})$
 - 2. $link_i^h'(\mathbf{Y}, \mathbf{Z})$
 - 3. $\tau(\mathbf{X}/r:c) \in f_i(\tau(\mathbf{Y}), \tau(\mathbf{Z}))$
- By IH, 1, 2, as $\mathbf{X}/r:c \in dom^h'(\mathbf{Y})$, $\sigma(\mathbf{X})/r:c \in dom^g'(\sigma(\mathbf{Y}))$ and $link_i^g'(\sigma(\mathbf{Y}), \sigma(\mathbf{Z}))$
- As σ preserves type, IH and 3 imply

$$\tau(\sigma(\mathbf{X})/r:c) \in f_i(\tau((\sigma(\mathbf{Y})), \tau(\sigma(\mathbf{Z})))$$

IH says G'legal, so G is legal

Corollary

• If $link_i^h(X, Y)$, then $link_i^g(\sigma(X), \sigma(Y))$

Main Theorem

- System has acyclic attenuating scheme
- For every history H deriving state h from initial state, there is a history G without create operations that derives g from the fully unfolded state u such that

$$(\forall X,Y \in SUB^h)[flow^h(X,Y) \subseteq flow^g(\sigma(X),\sigma(Y))]$$

 Meaning: any history derived from an initial state can be simulated by corresponding history applied to the fully unfolded state derived from the initial state

Proof

- Outline of proof: show that every $path^h(\mathbf{X},\mathbf{Y})$ has corresponding $path^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))$ such that $cap(path^h(\mathbf{X},\mathbf{Y})) = cap(path^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))$
 - Then corresponding sets of tickets flow through systems derived from H and
 - As initial states correspond, so do those systems
- Proof by induction on number of links

Basis and Hypothesis

• Length of $path^h(\mathbf{X}, \mathbf{Y}) = 1$. By definition of $path^h$, $link_i^h(\mathbf{X}, \mathbf{Y})$, hence $link_i^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))$. As σ preserves type, this means $cap(path^h(\mathbf{X}, \mathbf{Y})) = cap(path^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y})))$

• Now assume this is true when $path^h(X, Y)$ has length k

Step

- Let $path^h(X, Y)$ have length k+1. Then there is a **Z** such that $path^h(X, Z)$ has length k and $link_i^h(Z, Y)$.
- By IH, there is a $path^g(\sigma(\mathbf{X}), \sigma(\mathbf{Z}))$ with same capacity as $path^h(\mathbf{X}, \mathbf{Z})$
- By corollary, $link_j^g(\sigma(\mathbf{Z}), \sigma(\mathbf{Y}))$
- As σ preserves type, there is $path^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))$ with $cap(path^h(\mathbf{X}, \mathbf{Y})) = cap(path^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y})))$

Implication

- Let maximal state corresponding to u be #u
 - Deriving history has no creates
 - By theorem,

$$(\forall X,Y \in SUB^h)[flow^h(X,Y) \subseteq flow^{\#u}(\sigma(X),\sigma(Y))]$$

• If $X \in SUB^0$, $\sigma(X) = X$, so:

$$(\forall X,Y \in SUB^0)[flow^h(X,Y) \subseteq flow^{\#u}(X,Y)]$$

- So #u is maximal state for system with acyclic attenuating scheme
 - #u derivable from u in time polynomial to $|SUB^u|$
 - Worst case computation for flow^{#u} is exponential in |TS|

Safety Result

 If the scheme is acyclic and attenuating, the safety question is decidable