ECS 235B Module 11 Expressiveness

Expressive Power

- How do the sets of systems that models can describe compare?
 - If HRU equivalent to SPM, SPM provides more specific answer to safety question
 - If HRU describes more systems, SPM applies only to the systems it can describe

HRU vs. SPM

- SPM more abstract
 - Analyses focus on limits of model, not details of representation
- HRU allows revocation
 - SMP has no equivalent to delete, destroy
- HRU allows multiparent creates
 - SMP cannot express multiparent creates easily, and not at all if the parents are of different types because *can*•*create* allows for only one type of creator

Multiparent Create

- Solves mutual suspicion problem
 - Create proxy jointly, each gives it needed rights
- In HRU:

```
command multicreate(s<sub>0</sub>, s<sub>1</sub>, o)
if r in a[s<sub>0</sub>, s<sub>1</sub>] and r in a[s<sub>1</sub>, s<sub>0</sub>]
then
create object o;
enter r into a[s<sub>0</sub>, o];
```

```
enter r into a[s_1, o];
```

SPM and Multiparent Create

- cc extended in obvious way
 - $cc \subseteq TS \times ... \times TS \times T$
- Symbols
 - X₁, ..., X_n parents, Y created
 - $R_{1,i}, R_{2,i}, R_3, R_{4,i} \subseteq R$
- Rules
 - $cr_{P,i}(\tau(\mathbf{X}_1), ..., \tau(\mathbf{X}_n)) = \mathbf{Y}/R_{1,1} \cup \mathbf{X}_i/R_{2,i}$
 - $cr_{C}(\tau(\mathbf{X}_{1}), ..., \tau(\mathbf{X}_{n})) = \mathbf{Y}/R_{3} \cup \mathbf{X}_{1}/R_{4,1} \cup ... \cup \mathbf{X}_{n}/R_{4,n}$

Example

- Anna, Bill must do something cooperatively
 - But they don't trust each other
- Jointly create a proxy
 - Each gives proxy only necessary rights
- In ESPM:
 - Anna, Bill type a; proxy type p; right $x \in R$
 - cc(a, a) = p
 - $cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 - $cr_{proxy}(a, a, p) = \{ Anna/x, Bill/x \}$

2-Parent Joint Create Suffices

- Goal: emulate 3-parent joint create with 2-parent joint create
- Definition of 3-parent joint create (subjects P₁, P₂, P₃; child C):
 - $cc(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = Z \subseteq T$
 - $cr_{P1}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{1,1} \cup P_1/R_{2,1}$
 - $cr_{P2}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{2,1} \cup P_2/R_{2,2}$
 - $cr_{P3}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{3,1} \cup P_3/R_{2,3}$

General Approach

- Define agents for parents and child
 - Agents act as surrogates for parents
 - If create fails, parents have no extra rights
 - If create succeeds, parents, child have exactly same rights as in 3-parent creates
 - Only extra rights are to agents (which are never used again, and so these rights are irrelevant)

Entities and Types

- Parents P₁, P₂, P₃ have types p₁, p₂, p₃
- Child **C** of type *c*
- Parent agents A₁, A₂, A₃ of types a₁, a₂, a₃
- Child agent **S** of type *s*
- Type t is parentage
 - if $\mathbf{X}/t \in dom(\mathbf{Y})$, **X** is **Y**'s parent
- Types *t*, *a*₁, *a*₂, *a*₃, *s* are new types

can•create

- Following added to *can*•*create*:
 - $cc(p_1) = a_1$
 - $cc(p_2, a_1) = a_2$
 - $cc(p_3, a_2) = a_3$
 - Parents creating their agents; note agents have maximum of 2 parents
 - $cc(a_3) = s$
 - Agent of all parents creates agent of child
 - cc(s) = c
 - Agent of child creates child

Creation Rules

- Following added to create rule:
 - $cr_P(p_1, a_1) = \emptyset$
 - $cr_{c}(p_{1}, a_{1}) = p_{1}/Rtc$
 - Agent's parent set to creating parent; agent has all rights over parent
 - $cr_{Pfirst}(p_2, a_1, a_2) = \emptyset$
 - $cr_{Psecond}(p_2, a_1, a_2) = \emptyset$
 - $cr_{c}(p_{2}, a_{1}, a_{2}) = p_{2}/Rtc \cup a_{1}/tc$
 - Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

Creation Rules

- $cr_{Pfirst}(p_3, a_2, a_3) = \emptyset$
- $cr_{Psecond}(p_3, a_2, a_3) = \emptyset$
- $cr_{c}(p_{3}, a_{2}, a_{3}) = p_{3}/Rtc \cup a_{2}/tc$
 - Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- $cr_P(a_3, s) = \emptyset$
- $cr_{c}(a_{3}, s) = a_{3}/tc$
 - Child's agent has third agent as parent $cr_P(a_3, s) = \emptyset$
- $cr_P(s, c) = \mathbf{C}/Rtc$
- $cr_c(s, c) = c/R_3 t$
 - Child's agent gets full rights over child; child gets R_3 rights over agent

Link Predicates

- Idea: no tickets to parents until child created
 - Done by requiring each agent to have its own parent rights
 - $link_1(A_2, A_1) = A_1/t \in dom(A_2) \land A_2/t \in dom(A_2)$
 - $link_1(A_3, A_2) = A_2/t \in dom(A_3) \land A_3/t \in dom(A_3)$
 - $link_2(S, A_3) = A_3/t \in dom(S) \land C/t \in dom(C)$
 - $link_3(\mathbf{A}_1, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_1)$
 - $link_3(\mathbf{A}_2, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_2)$
 - $link_3(A_3, C) = C/t \in dom(A_3)$
 - $link_4(\mathbf{A}_1, \mathbf{P}_1) = \mathbf{P}_1/t \in dom(\mathbf{A}_1) \land \mathbf{A}_1/t \in dom(\mathbf{A}_1)$
 - $link_4(\mathbf{A}_2, \mathbf{P}_2) = \mathbf{P}_2/t \in dom(\mathbf{A}_2) \land \mathbf{A}_2/t \in dom(\mathbf{A}_2)$
 - $link_4(A_3, P_3) = P_3/t \in dom(A_3) \land A_3/t \in dom(A_3)$

Filter Functions

- $f_1(a_2, a_1) = a_1/t \cup c/Rtc$
- $f_1(a_3, a_2) = a_2/t \cup c/Rtc$
- $f_2(s, a_3) = a_3/t \cup c/Rtc$
- $f_3(a_1, c) = p_1/R_{4,1}$
- $f_3(a_2, c) = p_2/R_{4,2}$
- $f_3(a_3, c) = p_3/R_{4,3}$
- $f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1}$
- $f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2}$
- $f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3}$

Construction

Create **A**₁, **A**₂, **A**₃, **S**, **C**; then

- **P**₁ has no relevant tickets
- P₂ has no relevant tickets
- **P**₃ has no relevant tickets
- **A**₁ has **P**₁/*Rtc*
- A_2 has $P_2/Rtc \cup A_1/tc$
- A_3 has $P_3/Rtc \cup A_2/tc$
- S has $A_3/tc \cup C/Rtc$
- **C** has **C**/*R*₃*t*

Construction

- Only $link_2(\mathbf{S}, \mathbf{A}_3)$ true \Rightarrow apply f_2 • \mathbf{A}_3 has $\mathbf{P}_3/Rtc \cup \mathbf{A}_2/t \cup \mathbf{A}_3/t \cup \mathbf{C}/Rtc$
- Now $link_1(\mathbf{A}_3, \mathbf{A}_2)$ true $\Rightarrow apply f_1$
 - \mathbf{A}_2 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc \cup \mathbf{A}_2/t \cup \mathbf{C}/Rtc$
- Now $link_1(\mathbf{A}_2, \mathbf{A}_1)$ true $\Rightarrow apply f_1$
 - \mathbf{A}_1 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/t \cup \mathbf{C}/Rtc$
- Now all $link_3$ s true \Rightarrow apply f_3
 - C has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$

Finish Construction

- Now $link_4$ is true \Rightarrow apply f_4
 - \mathbf{P}_1 has $\mathbf{C}/R_{1,1} \cup \mathbf{P}_1/R_{2,1}$
 - \mathbf{P}_2 has $\mathbf{C}/R_{1,2} \cup \mathbf{P}_2/R_{2,2}$
 - **P**₃ has **C**/ $R_{1,3} \cup$ **P**₃/ $R_{2,3}$
- 3-parent joint create gives same rights to P₁, P₂, P₃, C
- If create of **C** fails, *link*₂ fails, so construction fails

Theorem

- The two-parent joint creation operation can implement an *n*-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.
- Proof: by construction, as above
 - Difference is that the two systems need not start at the same initial state

Theorems

- Monotonic ESPM and the monotonic HRU model are equivalent.
- Safety question in ESPM also decidable if acyclic attenuating scheme
 - Proof similar to that for SPM

Expressiveness

- Graph-based representation to compare models
- Graph
 - Vertex: represents entity, has static type
 - Edge: represents right, has static type
- Graph rewriting rules:
 - Initial state operations create graph in a particular state
 - Node creation operations add nodes, incoming edges
 - Edge adding operations add new edges between existing vertices

Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes P₁, P₂, P₃ parents
 - Create node **C** with type *c* with edges of type *e*
 - Add node **A**₁ of type *a* and edge from **P**₁ to **A**₁ of type *e*'

Next Step

- A_1 , P_2 create A_2 ; A_2 , P_3 create A_3
- Type of nodes, edges are *a* and *e*'

Next Step

- A₃ creates **S**, of type *a*
- S creates C, of type c

Last Step

- Edge adding operations:
 - $\mathbf{P}_1 \rightarrow \mathbf{A}_1 \rightarrow \mathbf{A}_2 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}: \mathbf{P}_1 \text{ to } \mathbf{C} \text{ edge type } e$
 - $\mathbf{P}_2 \rightarrow \mathbf{A}_2 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}$: \mathbf{P}_2 to \mathbf{C} edge type e
 - $\mathbf{P}_3 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}$: \mathbf{P}_3 to \mathbf{C} edge type e

Definitions

- *Scheme*: graph representation as above
- *Model*: set of schemes
- Schemes *A*, *B* correspond if graph for both is identical when all nodes with types not in *A* and edges with types in *A* are deleted

Example

- Above 2-parent joint creation simulation in scheme TWO
- Equivalent to 3-parent joint creation scheme THREE in which P₁, P₂, P₃, C are of same type as in TWO, and edges from P₁, P₂, P₃ to C are of type e, and no types a and e' exist in TWO

Simulation

Scheme A simulates scheme B iff

- every state B can reach has a corresponding state in A that A can reach; and
- every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach
 - The last means that A can have intermediate states not corresponding to states in *B*, like the intermediate ones in *TWO* in the simulation of *THREE*

Expressive Power

- If there is a scheme in *MA* that no scheme in *MB* can simulate, *MB less expressive than MA*
- If every scheme in *MA* can be simulated by a scheme in *MB*, *MB* as expressive as *MA*
- If MA as expressive as MB and vice versa, MA and MB equivalent

Example

- Scheme A in model M
 - Nodes **X**₁, **X**₂, **X**₃
 - 2-parent joint create
 - 1 node type, 1 edge type
 - No edge adding operations
 - Initial state: **X**₁, **X**₂, **X**₃, no edges
- Scheme *B* in model *N*
 - All same as A except no 2-parent joint create
 - 1-parent create
- Which is more expressive?

Can A Simulate B?

- Scheme A simulates 1-parent create: have both parents be same node
 - Model *M* as expressive as model *N*

Can *B* Simulate *A*?

- Suppose X₁, X₂ jointly create Y in A
 - Edges from \mathbf{X}_1 , \mathbf{X}_2 to \mathbf{Y} , no edge from \mathbf{X}_3 to \mathbf{Y}
- Can B simulate this?
 - Without loss of generality, \mathbf{X}_1 creates \mathbf{Y}
 - Must have edge adding operation to add edge from \mathbf{X}_2 to \mathbf{Y}
 - One type of node, one type of edge, so operation can add edge between any 2 nodes

No

- All nodes in A have even number of incoming edges
 - 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from X₂ to C can add one from X₃ to C
 - A cannot enter this state
 - *B* cannot transition to a state in which **Y** has even number of incoming edges
 - No remove rule
- So B cannot simulate A; N less expressive than M

Theorem

- Monotonic single-parent models are less expressive than monotonic multiparent models
- Proof by contradiction
 - Scheme A is multiparent model
 - Scheme B is single parent create
 - Claim: *B* can simulate *A*, without assumption that they start in the same initial state
 - Note: example assumed same initial state

Outline of Proof

- \mathbf{X}_1 , \mathbf{X}_2 nodes in A
 - They create **Y**₁, **Y**₂, **Y**₃ using multiparent create rule
 - **Y**₁, **Y**₂ create **Z**, again using multiparent create rule
 - *Note*: no edge from \mathbf{Y}_3 to **Z** can be added, as A has no edge-adding operation

Outline of Proof

- **W**, **X**₁, **X**₂ nodes in *B*
 - W creates Y₁, Y₂, Y₃ using single parent create rule, and adds edges for X₁, X₂ to all using edge adding rule
 - Y₁ creates Z, again using single parent create rule; now must add edge from Y₂ to Z to simulate A
 - Use same edge adding rule to add edge from Y_3 to Z: cannot duplicate this in scheme A!

Meaning

- Scheme B cannot simulate scheme A, contradicting hypothesis
- ESPM more expressive than SPM
 - ESPM multiparent and monotonic
 - SPM monotonic but single parent