ECS 235B Module 11
Expressiveness



Expressive Power

* How do the sets of systems that models can describe compare?

* |f HRU equivalent to SPM, SPM provides more specific answer to safety
guestion

* |f HRU describes more systems, SPM applies only to the systems it can
describe



HRU vs. SPM

* SPM more abstract
* Analyses focus on limits of model, not details of representation

* HRU allows revocation
 SMP has no equivalent to delete, destroy

* HRU allows multiparent creates

* SMP cannot express multiparent creates easily, and not at all if the parents
are of different types because canecreate allows for only one type of creator



Multiparent Create

* Solves mutual suspicion problem
* Create proxy jointly, each gives it needed rights

* In HRU:

command multicreate(s,, S;, O)
if r in a[s,, s;] and r in a[s;, S;]
then
create object o;
enter r into a[s,, 0];
enter r into a[s;, 0];
end



SPM and Multiparent Create

* cc extended in obvious way
ccccTSX..xTSxT

* Symbols

* X4, ..., X, parents, Y created
* Ry Ry R, Ry i SR

* Rules
* crpdt(Xy), ..., T(X,)) = Y/R1,1 - Xi/RZ,i
* cre(t(Xy), ..., T(X,)) = Y/R3 U Xy /Ry 1 U

. UX, /Ry,



Example

* Anna, Bill must do something cooperatively
* But they don't trust each other

* Jointly create a proxy
* Each gives proxy only necessary rights

* [n ESPM:
* Anna, Bill type a; proxy type p; right x € R
e ccla,a)=p
* Crannala, a, p) = crgyla, a, p) =
* Croroxy(@, @, p) = { Anna/x, Bill/x }



2-Parent Joint Create Suffices

* Goal: emulate 3-parent joint create with 2-parent joint create

* Definition of 3-parent joint create (subjects P4, P,, P5; child C):
* cc(t(Py), T(Py), T(P3)) =Z T
* crpy(t(P41), T(Py), T(P3)) = C/Ry; U P1/Ry 4
* crpy(t(Py), T(Py), T(P3)) = C/Ry 1 U Py/R,
* crp3(t(Pq), T(Py), ©(P3)) = C/R3; W P3/R; 5



General Approach

* Define agents for parents and child
* Agents act as surrogates for parents
* |f create fails, parents have no extra rights

* |f create succeeds, parents, child have exactly same rights as in 3-parent
creates

* Only extra rights are to agents (which are never used again, and so these rights are
irrelevant)



Entities and Types

* Parents P4, P,, P; have types p;, p,, p3

* Child C of type ¢

* Parent agents A, A,, A; of types a4, a,, a5
* Child agent S of type s

* Type tis parentage
o if X/t € dom(Y), X is Y’s parent

* Types t, a4, a,, as, S are new types



canecreaqte

* Following added to canecreate:
* cc(py) = a;
* cc(py, aq) =0,
* cc(ps, ay) = a3
* Parents creating their agents; note agents have maximum of 2 parents
cc(as) =s
* Agent of all parents creates agent of child
cc(s)=c
* Agent of child creates child



Creation Rules

* Following added to create rule:
* crplpy, a;) =
crepy, a1) = pa/Rtc
* Agent’s parent set to creating parent; agent has all rights over parent
° CrPfirst(er dq, az) = @
CrPsecond(pZI alr 02) = @
CrC(pZI alr aZ) = pZ/RtC U C71/t-c

* Agent’s parent set to creating parent and agent; agent has all rights over parent (but not
over agent)



Creation Rules

* CrPfirst(pBI as, 03) =
* CrPsecond(p3r a,, 03) =
* cre(ps, a,, a3) = ps/Rtc U a,/tc

* Agent’s parent set to creating parent and agent; agent has all rights over parent (but not
over agent)

* crplas, 5) =D
* cre(as, s) = as/tc
* Child’s agent has third agent as parent cry(a;, s) = J
* crp(s, c) = C/Rtc
* cr(s, c) =c/Rst
* Child’s agent gets full rights over child; child gets R, rights over agent



Link Predicates

* ldea: no tickets to parents until child created

* Done by requiring each agent to have its own parent rights
* link,(A,, A;) = A,/t € dom(A,) A A,/t € dom(A,)

* link,(A;, A,) = A,/t € dom(A;) A Aj/t € dom(A;)

* link,(S, A;) = A5/t € dom(S) A C/t € dom(C)

* link;(A,, C) =C/t € dom(A,)

* link;(A,, C) = C/t € dom(A,)

* link;(A;, C) = C/t € dom(A;)

* link,(A,, P,) =P/t € dom(A,) A A/t € dom(A,)

* link,(A,, P,) =P,/t € dom(A,) A A,/t € dom(A,)

* link,(A5, P3) = P3/t € dom(A3) A As/t € dom(A;)



Filter Functions

* f.(a,, a,) = a,/t U c/Rtc

* fi(as, a,) = a,/t U c/Rtc

* f,(s, a3) = a5/t U c/Rtc

* f3(ay, €) = p1/Ry

* f3(a,, €) = py/Ry

* f3(as, ¢) = p3/Ry 3

* falay, p1) = ¢/Ri1 Y p1/Ry,
* falay, P3) = ¢/R12 VU Py/Ry
* falas, p3) = ¢/R13 Y p3/Ry 3



Construction

Create A, A,, A3, S, C; then
* P, has no relevant tickets
* P, has no relevant tickets
* P; has no relevant tickets
* A, has P,/Rtc

* A, has P,/Rtc U A,/tc

* A; has P;/Rtc U A,/tc

* S has A;/tc U C/Rtc

* Chas C/Rst




Construction

* Only link,(S, A3) true = apply f,
* A; has Py/Rtc U A,/t U A3/t U C/Rtc

* Now link(A;, A,) true = apply f;
* A, has P,/Rtc U A,/tc U A,/t U C/Rtc

* Now link,(A,, A;) true = apply f;
* A, has P,/Rtc U A/t U C/Rtc

* Now all links;s true = apply f;
* Chas C/R; UP/Ry1 UP,/R,, UP3/R, 5



Finish Construction

* Now link,is true = apply f,
* P, hasC/R, 1 UP,/R;,
* P, has C/R;, UP,/R,,
* Py has C/R; 5 U P3/R, ;

* 3-parent joint create gives same rights to P, P,, P5, C
* If create of C fails, link, fails, so construction fails



Theorem

* The two-parent joint creation operation can implement an n-parent
joint creation operation with a fixed number of additional types and
rights, and augmentations to the link predicates and filter functions.

* Proof: by construction, as above
» Difference is that the two systems need not start at the same initial state



Theorems

* Monotonic ESPM and the monotonic HRU model are equivalent.

 Safety question in ESPM also decidable if acyclic attenuating scheme
* Proof similar to that for SPM



Expressiveness

* Graph-based representation to compare models
* Graph

* Vertex: represents entity, has static type
* Edge: represents right, has static type

* Graph rewriting rules:
* |nitial state operations create graph in a particular state
* Node creation operations add nodes, incoming edges
* Edge adding operations add new edges between existing vertices



Example: 3-Parent Joint Creation

e Simulate with 2-parent
* Nodes P4, P,, P; parents
* Create node C with type ¢ with edges of type e
* Add node A, of type a and edge from P, to A, of type e’

P1© P, O P3O



Next Step

* A, P, create A,; A,, P; create A,
* Type of nodes, edges are g and e’



Next Step

* A; creates S, of type a
* S creates C, of type ¢



Last Step

* Edge adding operations:
* P,>A,—>A,—>A;—>S—C: P, to Cedge type e
* P,>A,—A;—>S—>C: P, to Cedge type e
* P;>A;—>S—C: P;to Cedge typee




Definitions

* Scheme: graph representation as above
* Model: set of schemes

* Schemes A, B correspond if graph for both is identical when all nodes
with types not in A and edges with types in A are deleted



Example

* Above 2-parent joint creation simulation in scheme TWO

* Equivalent to 3-parent joint creation scheme THREE in which P, P,,
P;, C are of same type as in TWO, and edges from P,, P,, P; to C are of
type e, and no types a and e’ exist in TWO



Simulation

Scheme A simulates scheme B iff

* every state B can reach has a corresponding state in A that A can
reach; and

* every state that A can reach either corresponds to a state B can reach,
or has a successor state that corresponds to a state B can reach

* The last means that A can have intermediate states not corresponding to
states in B, like the intermediate ones in TWO in the simulation of THREE



Expressive Power

* |f there is a scheme in MA that no scheme in MB can simulate, MB
less expressive than MA

* If every scheme in MA can be simulated by a scheme in MB, MB as
expressive as MA

* If MA as expressive as MB and vice versa, MA and MB equivalent



Example

* Scheme A in model M
* Nodes Xy, X,, X3
* 2-parent joint create
* 1 node type, 1 edge type
* No edge adding operations
* Initial state: X;, X,, X3, no edges

e Scheme B in model N

* All same as A except no 2-parent joint create
* 1-parent create

* Which is more expressive?



Can A Simulate B?

* Scheme A simulates 1-parent create: have both parents be same
node

* Model M as expressive as model N



Can B Simulate A?

* Suppose X;, X, jointly createYin A
* Edges from X;, X, to Y, no edge from X;to Y

* Can B simulate this?
* Without loss of generality, X, creates Y
* Must have edge adding operation to add edge from X, to Y

* One type of node, one type of edge, so operation can add edge between any
2 nodes



NoO

* All nodes in A have even number of incoming edges
e 2-parent create adds 2 incoming edges

* Edge adding operation in B that can edge from X, to C can add one
from X;to C
e A cannot enter this state

* B cannot transition to a state in which Y has even number of incoming edges
* No remove rule

* So B cannot simulate A; N less expressive than M



Theorem

* Monotonic single-parent models are less expressive than monotonic
multiparent models

* Proof by contradiction
* Scheme A is multiparent model
* Scheme B is single parent create

e Claim: B can simulate A, without assumption that they start in the same initial
state

* Note: example assumed same initial state



Outline of Proof

* X, X, nodesinA
* They create Y,, Y,, Y5 using multiparent create rule
* Y, Y, create Z, again using multiparent create rule
* Note: no edge from Y; to Z can be added, as A has no edge-adding operation




Outline of Proof

* W, X, X, nodes in B

W createsY,, Y,, Y5 using single parent create rule, and adds edges for X,, X, to all using
edge adding rule

* Y, creates Z, again using single parent create rule; now must add edge from Y, to Z to
simulate A

* Use same edge adding rule to add edge from Y; to Z: cannot duplicate this in scheme A!

—

Y, » Z




Meaning

* Scheme B cannot simulate scheme A, contradicting hypothesis

* ESPM more expressive than SPM
* ESPM multiparent and monotonic
* SPM monotonic but single parent



