Example of Take-Grant Rule Applications
How can y obtain r rights over a?
z takes \((r \text{ to } a)\) from x
z grants (r to a) to y
So the Witness Is:

1. \(z \) takes (\(r \) to \(a \)) from \(x \)
2. \(z \) grants (\(r \) to \(a \)) to \(w \)
What

Homework 1, Problem 3

Asks
Problem Statement

• Justify the statement: “Suppose two subjects s_1 and s_2 are created and the rights in $A[s_1, o_1]$ and $A[s_2, o_2]$ are tested. The same test for $A[s_1, o_1]$ and $A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2]$ will produce the same result.”

• Would it be true if one could test for the absence of rights as well as for the presence of rights?
2 create subjects

create subject s_1
create subject s_2
enter r into $A[s_2, o_2]$
if r in $A[s_2, o_2]$
then

\[[\text{IMPORTANT: these would be in commands}] \]
Problem: prove the result of executing the two command sequences produces the same result
Test for Absence of Rights

• Current access control matrix model allows conditional tests of the form \(\text{if } r \text{ in } A[s,o] \text{ but not if } r \text{ not in } A[s,o] \)

• The problem asks, what if \textit{both} are allowed? Would the two command sequences still produce the same results?