ECS 235B Module 16
Precise and Secure Policies
Types of Mechanisms

- **secure**
- **precise**
- **broad**

set of reachable states

set of secure states
Secure, Precise Mechanisms

• Can one devise a procedure for developing a mechanism that is both secure and precise?
 • Consider confidentiality policies only here
 • Integrity policies produce same result

• Program a function with multiple inputs and one output
 • Let p be a function $p: I_1 \times \ldots \times I_n \rightarrow R$. Then p is a program with n inputs $i_k \in I_k$, $1 \leq k \leq n$, and one output $r \rightarrow R$
Secure, Precise Mechanisms

• Can one devise a procedure for developing a mechanism that is both secure and precise?
 • Consider confidentiality policies only here
 • Integrity policies produce same result

• Program a function with multiple inputs and one output
 • Let \(p \) be a function \(p: I_1 \times \ldots \times I_n \rightarrow R \). Then \(p \) is a program with \(n \) inputs \(i_k \in I_k \), \(1 \leq k \leq n \), and one output \(r \in R \)
Programs and Postulates

• Observability Postulate: the output of a function encodes all available information about its inputs
 • Covert channels considered part of the output

• Example: authentication function
 • Inputs name, password; output Good or Bad
 • If name invalid, immediately print Bad; else access database
 • Problem: time output of Bad, can determine if name valid
 • This means timing is part of output
Protection Mechanism

• Let p be a function $p: I_1 \times \ldots \times I_n \rightarrow R$. A protection mechanism m is a function

$$m: I_1 \times \ldots \times I_n \rightarrow R \cup E$$

for which, when $i_k \in I_k$, $1 \leq k \leq n$, either

• $m(i_1, \ldots, i_n) = p(i_1, \ldots, i_n)$ or
• $m(i_1, \ldots, i_n) \in E$.

• E is set of error outputs

 • In above example, $E = \{ \text{“Password Database Missing”, “Password Database Locked”} \}$
Confidentiality Policy

• Confidentiality policy for program \(p \) says which inputs can be revealed
 • Formally, for \(p: I_1 \times \ldots \times I_n \rightarrow R \), it is a function \(c: I_1 \times \ldots \times I_n \rightarrow A \), where
 \[A \subseteq I_1 \times \ldots \times I_n \]
 • \(A \) is set of inputs available to observer

• Security mechanism is function
 \[m: I_1 \times \ldots \times I_n \rightarrow R \cup E \]
 • \(m \) is secure if and only if \(\exists m': A \rightarrow R \cup E \) such that,
 \[\forall i_k \in I_k, 1 \leq k \leq n, m(i_1, \ldots, i_n) = m'(c(i_1, \ldots, i_n)) \]
 • \(m \) returns values consistent with \(c \)
Examples

• $c(i_1, ..., i_n) = C$, a constant
 • Deny observer any information (output does not vary with inputs)

• $c(i_1, ..., i_n) = (i_1, ..., i_n)$, and $m' = m$
 • Allow observer full access to information

• $c(i_1, ..., i_n) = i_1$
 • Allow observer information about first input but no information about other inputs.
Precision

• Security policy may be over-restrictive
 • Precision measures how over-restrictive

• \(m_1, m_2 \) distinct protection mechanisms for program \(p \) under policy \(c \)
 • \(m_1 \) as precise as \(m_2 \) \((m_1 \approx m_2) \) if, for all inputs \(i_1, ..., i_n \)
 \(m_2(i_1, ..., i_n) = p(i_1, ..., i_n) \Rightarrow m_1(i_1, ..., i_n) = p(i_1, ..., i_n) \)
 • \(m_1 \) more precise than \(m_2 \) \((m_1 \sim m_2) \) if there is an input \((i_1', ..., i_n') \) such that
 \(m_1(i_1', ..., i_n') = p(i_1', ..., i_n') \) and \(m_2(i_1', ..., i_n') \neq p(i_1', ..., i_n'). \)
Combining Mechanisms

- m_1, m_2 protection mechanisms
- $m_3 = m_1 \cup m_2$
 - For inputs on which m_1 and m_2 return same value as p, m_3 does also; otherwise, m_3 returns same value as m_1
- Theorem: if m_1, m_2 secure, then m_3 secure
 - Also, $m_3 \approx m_1$ and $m_3 \approx m_2$
 - Follows from definitions of secure, precise, and m_3
Existence Theorem

• For any program p and security policy c, there exists a precise, secure mechanism m^* such that, for all secure mechanisms m associated with p and c, $m^* \approx m$
 • Maximally precise mechanism
 • Ensures security
 • Minimizes number of denials of legitimate actions
Lack of Effective Procedure

• There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program.
 • Sketch of proof: let policy c be constant function, and p compute function $T(x)$. Assume $T(x) = 0$. Consider program q, where

\[
\begin{align*}
 z &= p; \\
 \text{if } z &= 0 \text{ then } y := 1 \text{ else } y := 2; \\
 \text{halt;}
\end{align*}
\]
Rest of Sketch

• m associated with q, y value of m, z output of p corresponding to $T(x)$
• $\forall x \ [T(x) = 0] \rightarrow m(x) = 1$
• $\exists x' \ [T(x') \neq 0] \rightarrow m(x) = 2$ or $m(x)$ undefined
• If you can determine m, you can determine whether $T(x) = 0$ for all x
• Determines some information about input (is it 0?)
• Contradicts constancy of c.
• Therefore no such procedure exists
Quiz

Which of the following are true?

• A security policy defines a set of states considered secure.
• A security mechanism is precise if it prevents the system from entering any non-secure states.
• A security mechanism is precise if it allows the system to enter non-secure states.
• A security mechanism is precise if it allows the system to enter any secure state and not any non-secure state.