ECS 235B Module 17 Lattices

Overview

- Lattices used to analyze several models
 - Bell-LaPadula confidentiality model
 - Biba integrity model
- A lattice consists of a set and a relation
- Relation must partially order set
 - Relation orders some, but not all, elements of set

Sets and Relations

- S set, R: S × S relation
 - If $a, b \in S$, and $(a, b) \in R$, write aRb
- Example
 - *I* = { 1, 2, 3 }; *R* is ≤
 - $R = \{ (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3) \}$
 - So we write $1 \le 2$ and $3 \le 3$ but not $3 \le 2$

Relation Properties

- Reflexive
 - For all $a \in S$, aRa
 - On I, \leq is reflexive as $1 \leq 1$, $2 \leq 2$, $3 \leq 3$
- Antisymmetric
 - For all $a, b \in S$, $aRb \land bRa \Rightarrow a = b$
 - On *I*, \leq is antisymmetric as $1 \leq x$ and $x \leq 1$ means x = 1
- Transitive
 - For all $a, b, c \in S$, $aRb \land bRc \Rightarrow aRc$
 - On *I*, \leq is transitive as $1 \leq 2$ and $2 \leq 3$ means $1 \leq 3$

Example

- ${\mathbb C}$ set of complex numbers
- $a \in \mathbb{C} \Rightarrow a = a_{R} + a_{I}i$, where a_{R} , a_{I} integers
- $a \leq_{\mathbf{C}} b$ if, and only if, $a_{\mathbf{R}} \leq b_{\mathbf{R}}$ and $a_{\mathbf{I}} \leq b_{\mathbf{I}}$
- $a \leq_{\mathbf{C}} b$ is reflexive, antisymmetric, transitive
 - As \leq is over integers, and $a_{\mathbf{R}}$, $a_{\mathbf{I}}$ are integers

Partial Ordering

- Relation R orders some members of set S
 - If all ordered, it's a total ordering
- Example
 - ≤ on integers is total ordering
 - $\leq_{\mathbb{C}}$ is partial ordering on \mathbb{C}
 - Neither $3+5i \leq_{\mathbb{C}} 4+2i$ nor $4+2i \leq_{\mathbb{C}} 3+5i$ holds

Upper Bounds

- For $a, b \in S$, if u in S with aRu, bRu exists, then u is an upper bound
 - A *least upper bound* if there is no *t* ∈ *S* such that *aRt*, *bRt*, and *tRu*
- Example
 - For 1 + 5i, $2 + 4i \in \mathbb{C}$
 - Some upper bounds are 2 + 5*i*, 3 + 8*i*, and 9 + 100*i*
 - Least upper bound is 2 + 5*i*

Lower Bounds

- For *a*, *b* ∈ *S*, if *I* in *S* with *IRa*, *IRb* exists, then *I* is a *lower bound*
 - A greatest lower bound if there is no $t \in S$ such that tRa, tRb, and lRt
- Example
 - For 1 + 5i, $2 + 4i \in \mathbb{C}$
 - Some lower bounds are 0, -1 + 2i, 1 + 1i, and 1+4i
 - Greatest lower bound is 1 + 4*i*

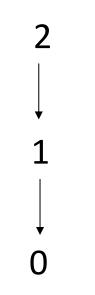
Lattices

- Set S, relation R
 - *R* is reflexive, antisymmetric, transitive on elements of *S*
 - For every *s*, *t* \in *S*, there exists a greatest lower bound under *R*
 - For every *s*, *t* ∈ *S*, there exists a least upper bound under *R*

Example

- $S = \{0, 1, 2\}; R = \le$ is a lattice
 - *R* is clearly reflexive, antisymmetric, transitive on elements of *S*
 - Least upper bound of any two elements of *S* is the greater of the elements
 - Greatest lower bound of any two elements of *S* is the lesser of the elements

Picture

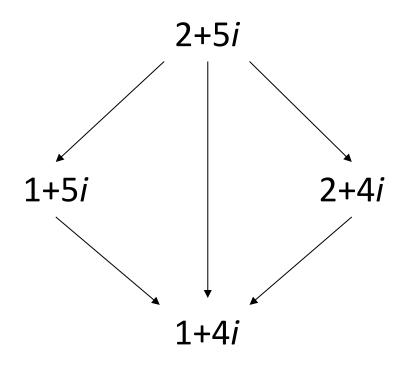


Arrows represent ≤; this forms a total ordering

Example

- \mathbb{C} , $\leq_{\mathbb{C}}$ form a lattice
 - $\leq_{\mathbb{C}}$ is reflexive, antisymmetric, and transitive
 - Shown earlier
 - Least upper bound for *a* and *b*:
 - $c_{R} = \max(a_{R}, b_{R}), c_{I} = \max(a_{I}, b_{I}); \text{ then } c = c_{R} + c_{I}i$
 - Greatest lower bound for *a* and *b*:
 - $c_{R} = \min(a_{R}, b_{R}), c_{I} = \min(a_{I}, b_{I}); \text{ then } c = c_{R} + c_{I}i$

Picture



Arrows represent $\leq_{\mathbb{C}}$