ECS 235B Module 19
Bell-LaPadula Model
Formal Model Definitions

• S subjects, O objects, P rights
 • Defined rights: r read, a write, w read/write, e empty

• M set of possible access control matrices

• C set of clearances/classifications, K set of categories, $L = C \times K$ set of security levels

• $F = \{(f_s, f_o, f_c)\}$
 • $f_s(s)$ maximum security level of subject s
 • $f_c(s)$ current security level of subject s
 • $f_o(o)$ security level of object o
More Definitions

• Hierarchy functions $H: O \rightarrow \mathcal{P}(O)$

• Requirements
 1. $o_i \neq o_j \Rightarrow \mathcal{h}(o_i) \cap \mathcal{h}(o_j) = \emptyset$
 2. There is no set $\{o_1, \ldots, o_k\} \subseteq O$ such that for $i = 1, \ldots, k$, $o_{i+1} \in \mathcal{h}(o_i)$ and $o_{k+1} = o_1$.

• Example
 • Tree hierarchy; take $\mathcal{h}(o)$ to be the set of children of o
 • No two objects have any common children (#1)
 • There are no loops in the tree (#2)
States and Requests

- V set of states
 - Each state is (b, m, f, h)
 - b is like m, but excludes rights not allowed by f
- R set of requests for access
- D set of outcomes
 - y allowed, n not allowed, i illegal, o error
- W set of actions of the system
 - $W \subseteq R \times D \times V \times V$
History

- $X = R^N$ set of sequences of requests
- $Y = D^N$ set of sequences of decisions
- $Z = V^N$ set of sequences of states

Interpretation
- At time $t \in N$, system is in state $z_{t-1} \in V$; request $x_t \in R$ causes system to make decision $y_t \in D$, transitioning the system into a (possibly new) state $z_t \in V$

System representation: $\Sigma(R, D, W, z_0) \in X \times Y \times Z$
- $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_{t-1}, z_t) \in W$ for all t
- (x, y, z) called an *appearance* of $\Sigma(R, D, W, z_0)$
Example

• $S = \{ s \}, O = \{ o \}, P = \{ r, w \}$
• $C = \{ \text{High, Low} \}, K = \{ \text{All} \}$
• For every $f \in F$, either $f_c(s) = (\text{High}, \{ \text{All} \})$ or $f_c(s) = (\text{Low}, \{ \text{All} \})$
• Initial State:
 • $b_1 = \{ (s, o, r) \}, m_1 \in M$ gives s read access over o, and for $f_1 \in F$, $f_{c,1}(s) = (\text{High}, \{ \text{All} \})$, $f_{o,1}(o) = (\text{Low}, \{ \text{All} \})$
 • Call this state $v_0 = (b_1, m_1, f_1, h_1) \in V$.
First Transition

• Now suppose in state v_0: $S = \{ s, s' \}$
• Suppose $f_{s,1}(s') = (\text{Low}, \{\text{All}\})$, $m_1 \in M$ gives s read access over o and s' write access to o
• As s' not written to o, $b_1 = \{ (s, o, r) \}$
• r_1: s' requests to write to o:
 • System decides $d_1 = y$ (as m_1 gives it that right, and $f_{s,1}(s') = f_o(o)$)
 • New state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 • $b_2 = \{ (s, o, r), (s', o, w) \}$
 • Here, $x = (r_1), y = (y), z = (v_0, v_1)$
Second Transition

• Current state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 • $b_2 = \{(s, o, r), (s', o, w)\}$
 • $f_{c,1}(s) = (\text{High}, \{\text{All}\}), f_{o,1}(o) = (\text{Low}, \{\text{All}\})$

• r_2: s requests to write to o:
 • System decides $d_2 = n$ (as $f_{c,1}(s) \text{ dom } f_{o,1}(o)$)
 • New state $v_2 = (b_2, m_1, f_1, h_1) \in V$
 • $b_2 = \{(s, o, r), (s', o, w)\}$
 • So, $x = (r_1, r_2), y = (y, n), z = (v_0, v_1, v_2)$, where $v_2 = v_1$
Basic Security Theorem

- Define action, secure formally
 - Using a bit of foreshadowing for “secure”
- Restate properties formally
 - Simple security condition
 - *-property
 - Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem
Action

• A request and decision that causes the system to move from one state to another
 • Final state may be the same as initial state
• \((r, d, v, v') \in R \times D \times V \times V\) is an action of \(\Sigma(R, D, W, z_0)\) iff there is an \((x, y, z) \in \Sigma(R, D, W, z_0)\) and a \(t \in N\) such that \((r, d, v, v') = (x_t, y_t, z_t, z_{t-1})\)
 • Request \(r\) made when system in state \(v'\); decision \(d\) moves system into (possibly the same) state \(v\)
 • Correspondence with \((x_t, y_t, z_t, z_{t-1})\) makes states, requests, part of a sequence
Simple Security Condition

- \((s, o, p) \in S \times O \times P\) satisfies the simple security condition relative to \(f\) (written \(ssc \ rel \ f\)) iff one of the following holds:
 1. \(p = e\) or \(p = a\)
 2. \(p = r\) or \(p = w\) and \(f_s(s) \ dom f_o(o)\)

- Holds vacuously if rights do not involve reading

- If all elements of \(b\) satisfy \(ssc \ rel \ f\), then state satisfies simple security condition

- If all states satisfy simple security condition, system satisfies simple security condition
Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the simple security condition for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies
 • Every $(s, o, p) \in b - b'$ satisfies $ssc_{rel} f$
 • Every $(s, o, p) \in b'$ that does not satisfy $ssc_{rel} f$ is not in b

• Note: “secure” means z_0 satisfies $ssc_{rel} f$

• First says every (s, o, p) added satisfies $ssc_{rel} f$; second says any (s, o, p) in b' that does not satisfy $ssc_{rel} f$ is deleted
*-Property

• $b(s: p_1, ..., p_n)$ set of all objects that s has $p_1, ..., p_n$ access to

• State (b, m, f, h) satisfies the *-property iff for each $s \in S$ the following hold:
 1. $b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) [f_o(o) \text{ dom } f_c(s)]]$
 2. $b(s: w) \neq \emptyset \Rightarrow [\forall o \in b(s: w) [f_o(o) = f_c(s)]]$
 3. $b(s: r) \neq \emptyset \Rightarrow [\forall o \in b(s: r) [f_c(s) \text{ dom } f_o(o)]]$

• Idea: for writing, object dominates subject; for reading, subject dominates object
*-Property

• If all states satisfy simple security condition, system satisfies simple security condition

• If a subset S' of subjects satisfy *-property, then *-property satisfied relative to $S' \subseteq S$

• Note: tempting to conclude that *-property includes simple security condition, but this is false
 • See condition placed on w right for each
 • Note simple security condition uses f_s; *-property uses f_c
Necessary and Sufficient

• \(\Sigma(R, D, W, z_0) \) satisfies the \(*\)-property relative to \(S' \subseteq S \) for any secure state \(z_0 \) iff for every action \((r, d, (b, m, f, h), (b', m', f', h'))\), \(W \) satisfies the following for every \(s \in S' \)
 • Every \((s, o, p) \in b - b'\) satisfies the \(*\)-property relative to \(S' \)
 • Every \((s, o, p) \in b'\) that does not satisfy the \(*\)-property relative to \(S' \) is not in \(b \)

• Note: “secure” means \(z_0 \) satisfies \(*\)-property relative to \(S' \)

• First says every \((s, o, p)\) added satisfies the \(*\)-property relative to \(S' \); second says any \((s, o, p)\) in \(b'\) that does not satisfy the \(*\)-property relative to \(S' \) is deleted
Discretionary Security Property

• State \((b, m, f, h)\) satisfies the discretionary security property iff, for each \((s, o, p) \in b\), then \(p \in m[s, o]\)

• Idea: if \(s\) can read \(o\), then it must have rights to do so in the access control matrix \(m\)

• This is the discretionary access control part of the model
 • The other two properties are the mandatory access control parts of the model
Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the ds-property for any secure state z_0 iff, for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies:
 • Every $(s, o, p) \in b - b'$ satisfies the ds-property
 • Every $(s, o, p) \in b'$ that does not satisfy the ds-property is not in b

• Note: “secure” means z_0 satisfies ds-property

• First says every (s, o, p) added satisfies the ds-property; second says any (s, o, p) in b' that does not satisfy the *-property is deleted
Secure

• A system is secure iff it satisfies:
 • Simple security condition
 • *-property
 • Discretionary security property

• A state meeting these three properties is also said to be secure
Basic Security Theorem

• \(\Sigma(R, D, W, z_0) \) is a secure system if \(z_0 \) is a secure state and \(W \) satisfies the conditions for the preceding three theorems
 • The theorems are on the slides titled “Necessary and Sufficient”