ECS 235B Module 19 Bell-LaPadula Model

Formal Model Definitions

- S subjects, O objects, P rights
 - Defined rights: <u>r</u> read, <u>a</u> write, <u>w</u> read/write, <u>e</u> empty
- *M* set of possible access control matrices
- C set of clearances/classifications, K set of categories, $L = C \times K$ set of security levels
- $F = \{ (f_s, f_o, f_c) \}$
 - $f_s(s)$ maximum security level of subject s
 - $f_c(s)$ current security level of subject s
 - $f_o(o)$ security level of object o

More Definitions

- Hierarchy functions $H: O \rightarrow \mathbb{P}(O)$
- Requirements
 - 1. $o_i \neq o_i \Rightarrow h(o_i) \cap h(o_i) = \emptyset$
 - 2. There is no set $\{o_1, ..., o_k\} \subseteq O$ such that for $i = 1, ..., k, o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.
- Example
 - Tree hierarchy; take h(o) to be the set of children of o
 - No two objects have any common children (#1)
 - There are no loops in the tree (#2)

States and Requests

- *V* set of states
 - Each state is (*b*, *m*, *f*, *h*)
 - b is like m, but excludes rights not allowed by f
- R set of requests for access
- D set of outcomes
 - <u>y</u> allowed, <u>n</u> not allowed, <u>i</u> illegal, <u>o</u> error
- W set of actions of the system
 - $W \subset R \times D \times V \times V$

History

- $X = R^N$ set of sequences of requests
- $Y = D^N$ set of sequences of decisions
- $Z = V^N$ set of sequences of states
- Interpretation
 - At time $t \in N$, system is in state $z_{t-1} \in V$; request $x_t \in R$ causes system to make decision $y_t \in D$, transitioning the system into a (possibly new) state $z_t \in V$
- System representation: $\Sigma(R, D, W, z_0) \in X \times Y \times Z$
 - $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_{t-1}, z_t) \in W$ for all t
 - (x, y, z) called an appearance of $\Sigma(R, D, W, z_0)$

Example

- $S = \{ s \}, O = \{ o \}, P = \{ \underline{r}, \underline{w} \}$
- C = { High, Low }, K = { All }
- For every $f \in F$, either $f_c(s) = (High, {All})$ or $f_c(s) = (Low, {All})$
- Initial State:
 - $b_1 = \{ (s, o, \underline{r}) \}, m_1 \in M \text{ gives } s \text{ read access over } o, \text{ and for } f_1 \in F, f_{c,1}(s) = \text{(High, {All})}, f_{o,1}(o) = \text{(Low, {All})}$
 - Call this state $v_0 = (b_1, m_1, f_1, h_1) \in V$.

First Transition

- Now suppose in state v_0 : $S = \{ s, s' \}$
- Suppose $f_{s,1}(s')$ = (Low, {All}), $m_1 \in M$ gives s read access over o and s' write access to o
- As s' not written to o, $b_1 = \{ (s, o, \underline{r}) \}$
- r_1 : s' requests to write to o:
 - System decides $d_1 = \underline{y}$ (as m_1 gives it that right, and $f_{s,1}(s') = f_o(o)$)
 - New state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, r), (s', o, w) \}$
 - Here, $x = (r_1)$, $y = (\underline{y})$, $z = (v_0, v_1)$

Second Transition

- Current state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, \underline{r}), (s', o, \underline{w}) \}$
 - $f_{c,1}(s) = (High, {All }), f_{o,1}(o) = (Low, {All })$
- r₂: s requests to write to o:
 - System decides $d_2 = \underline{\mathbf{n}} (as f_{c,1}(s) dom f_{o,1}(o))$
 - New state $v_2 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, \underline{r}), (s', o, \underline{w}) \}$
 - So, $x = (r_1, r_2)$, $y = (\underline{y}, \underline{n})$, $z = (v_0, v_1, v_2)$, where $v_2 = v_1$

Basic Security Theorem

- Define action, secure formally
 - Using a bit of foreshadowing for "secure"
- Restate properties formally
 - Simple security condition
 - *-property
 - Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem

Action

- A request and decision that causes the system to move from one state to another
 - Final state may be the same as initial state
- $(r, d, v, v') \in R \times D \times V \times V$ is an action of $\Sigma(R, D, W, z_0)$ iff there is an $(x, y, z) \in \Sigma(R, D, W, z_0)$ and a $t \in N$ such that $(r, d, v, v') = (x_t, y_t, z_t, z_{t-1})$
 - Request r made when system in state v'; decision d moves system into (possibly the same) state v
 - Correspondence with (x_t, y_t, z_t, z_{t-1}) makes states, requests, part of a sequence

Simple Security Condition

- $(s, o, p) \in S \times O \times P$ satisfies the simple security condition relative to f (written $ssc \ rel \ f$) iff one of the following holds:
 - 1. p = e or p = a
 - 2. $p = \underline{r}$ or $p = \underline{w}$ and $f_s(s)$ dom $f_o(o)$
- Holds vacuously if rights do not involve reading
- If all elements of b satisfy ssc rel f, then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition

Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the simple security condition for any secure state z_0 iff for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies
 - Every $(s, o, p) \in b b'$ satisfies ssc rel f
 - Every $(s, o, p) \in b'$ that does not satisfy ssc rel f is not in b
- Note: "secure" means z₀ satisfies ssc rel f
- First says every (s, o, p) added satisfies ssc rel f; second says any (s, o, p) in b'that does not satisfy ssc rel f is deleted

*-Property

- $b(s: p_1, ..., p_n)$ set of all objects that s has $p_1, ..., p_n$ access to
- State (b, m, f, h) satisfies the *-property iff for each $s \in S$ the following hold:
 - 1. $b(s: \underline{a}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{a}) [f_o(o) dom f_c(s)]]$
 - 2. $b(s: \underline{w}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{w}) [f_o(o) = f_c(s)]]$
 - 3. $b(s: \underline{r}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{r}) [f_c(s) dom f_o(o)]]$
- Idea: for writing, object dominates subject; for reading, subject dominates object

*-Property

- If all states satisfy simple security condition, system satisfies simple security condition
- If a subset S'of subjects satisfy *-property, then *-property satisfied relative to S'⊆S
- Note: tempting to conclude that *-property includes simple security condition, but this is false
 - See condition placed on w right for each
 - Note simple security condition uses f_s ; *-property uses f_c

Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies the following for every $s \in S'$
 - Every $(s, o, p) \in b b'$ satisfies the *-property relative to S'
 - Every (s, o, p) ∈ b' that does not satisfy the *-property relative to S' is not in b
- Note: "secure" means z₀ satisfies *-property relative to S'
- First says every (s, o, p) added satisfies the *-property relative to S'; second says any (s, o, p) in b'that does not satisfy the *-property relative to S' is deleted

Discretionary Security Property

- State (b, m, f, h) satisfies the discretionary security property iff, for each $(s, o, p) \in b$, then $p \in m[s, o]$
- Idea: if s can read o, then it must have rights to do so in the access control matrix m
- This is the discretionary access control part of the model
 - The other two properties are the mandatory access control parts of the model

Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the ds-property for any secure state z_0 iff, for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies:
 - Every $(s, o, p) \in b b'$ satisfies the ds-property
 - Every $(s, o, p) \in b'$ that does not satisfy the ds-property is not in b
- Note: "secure" means z_0 satisfies ds-property
- First says every (s, o, p) added satisfies the ds-property; second says any (s, o, p) in b' that does not satisfy the *-property is deleted

Secure

- A system is secure iff it satisfies:
 - Simple security condition
 - *-property
 - Discretionary security property
- A state meeting these three properties is also said to be secure

Basic Security Theorem

- $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and W satisfies the conditions for the preceding three theorems
 - The theorems are on the slides titled "Necessary and Sufficient"